Communication-avoiding Cholesky-QR2 for rectangular matrices

Edward Hutter and Edgar Solomonik

Laboratory for Parallel Numerical Algorithms
Department of Computer Science
University of Illinois at Urbana-Champaign

March 9, 2018

L·P·N·A @CS@Illinois
Abstract

- **Novelty:**
 - new distributed-memory QR factorization algorithm
 - extends recent Cholesky-QR2 algorithm to rectangular matrices
 - exploits a tunable processor grid to provably reduce communication
 - utilizes first distributed-memory implementation of recursive 3D Cholesky factorization

- **Benefits**
 - practical, flexible, and achieves minimal communication (data movement between processors)

- **Drawbacks**
 - matrix must be sufficiently well-conditioned
 - machine must have sufficient memory
Motivation for reducing parallel algorithmic costs

Communication cost model:

- α - cost of sending a message over a network
- β - cost of injecting a byte of data into a network
- γ - cost of a floating point operation

Current cost trend for distributed-memory machines:

- $\alpha \gg \beta \gg \gamma$

Goal: A QR factorization algorithm that prioritizes minimizing synchronization and communication cost
2D and 3D QR algorithm characteristics

- 2D algorithms are communication-optimal assuming minimal memory footprint
- 3D algorithms take advantage of extra memory to reduce communication
 - exist in theory but have not been implemented or studied in practice.\(^1\) \(^2\)

\(^1\) A. Tiskin 2007, "Communication-efficient generic pairwise elimination"
\(^2\) E. Solomonik et al., "A communication-avoiding parallel algorithm for the symmetric eigenvalue problem"
Parallel QR factorization cost comparison

- Scalapack PGEQRF method is a 2D Householder QR
- CA-QR utilizes TSQR along panels to reduce synchronization
- Communication-avoiding CholeskyQR2 is a tunable Cholesky-based QR factorization algorithm
- We will compare both the theoretical cost and performance

\[
T_{2D \text{ Householder QR}} = \mathcal{O} \left(n \log P \cdot \alpha + \frac{mn}{\sqrt{P}} \cdot \beta \right)
\]

\[
T_{CAQR-HR} = \mathcal{O} \left(\sqrt{P} \log^2 P \cdot \alpha + \frac{mn}{\sqrt{P}} \cdot \beta \right)
\]

\[
T_{CA-\text{CholeskyQR2}} = \mathcal{O} \left(\left(\frac{Pn}{m} \right)^{\frac{2}{3}} \log P \cdot \alpha + \left(\frac{n^2 m}{P} \right)^{\frac{2}{3}} \cdot \beta \right)
\]
Cholesky-QR algorithm

\[
\begin{align*}
[Q, R] & \leftarrow \text{CholeskyQR}(A) \\
B & \leftarrow A^T A \\
R & \leftarrow \text{Cholesky}(B) \\
Q & \leftarrow AR^{-1}
\end{align*}
\]

- \(A^T A = R^T Q^T QR = R^T R\) if \(Q\) is orthogonal
- Both Cholesky and triangular solve are backwards stable, yet sensitive to conditioning of \(B\)
- Cholesky can break down due to numerical error, losing positive-definiteness
- CholeskyQR is not stable, deviation from orthogonality of computed \(Q\) is \(O(\kappa(A)^2 \cdot \epsilon)\), where \(\epsilon\) is machine epsilon
Cholesky-QR2 algorithm

\[
[Q, R] \leftarrow \text{CholeskyQR2} (A)
\]

\[
Q_1, R_1 \leftarrow \text{CholeskyQR} (A) \\
Q, R_2 \leftarrow \text{CholeskyQR} (Q_1) \\
R \leftarrow R_2 R_1
\]

- By performing CholeskyQR 2x, the residual and deviation from orthogonality are \(\mathcal{O} (\epsilon) \) if \(\kappa (A) = \mathcal{O} \left(\frac{1}{\sqrt{\epsilon}} \right) \)

- Proposed as a replacement for TSQR for tall-and-skinny matrices
 - Lower theoretical communication cost by \(\mathcal{O} (\log P) \), better performance, and simpler implementation
 - TSQR is unconditionally stable

\(^3\) Y. Yamamoto et al., "Roundoff Error Analysis of the CholeskyQR2 .."

\(^4\) Y. Yamamoto et al., "CholeskyQR2: A communication-avoiding algorithm"
1D CholeskyQR2

$A^T = [A_1^T, A_2^T, A_3^T, A_4^T, A_5^T, A_6^T, A_7^T, A_8^T]$ = $B = A^T A$

$R = \text{Chol}(B)$
$Q = AR^{-1}$
1D CholeskyQR2

\[T_{\text{CholeskyQR2_1D}} (m, n, P) = \mathcal{O} \left(\log P \cdot \alpha + n^2 \cdot \beta + \left(\frac{n^2m}{P} + n^3 \right) \cdot \gamma \right) \]
Figure: 3D algorithm for square matrix multiplication

$$C = AB$$

1. Bersten 1989, "Communication-efficient matrix multiplication on hypercubes"
2. Aggarwal, Chandra, Snir 1990, "Communication complexity of PRAMs"
3. Agarwal et al. 1995, "A three-dimensional approach to parallel matrix multiplication"
Figure: 3D algorithm for square matrix multiplication

\[T_{3D-MM}(n, P) = O \left(\log P \cdot \alpha + \frac{n^2}{P^{2/3}} \cdot \beta + \frac{n^3}{P} \cdot \gamma \right) \]

\[C = AB \]

1. Bersten 1989, "Communication-efficient matrix multiplication on hypercubes"
2. Aggarwal, Chandra, Snir 1990, "Communication complexity of PRAMs"
3. Agarwal et al. 1995, "A three-dimensional approach to parallel matrix multiplication"
3D recursive CholeskyInverse

\[
\begin{bmatrix} L, L^{-1} \end{bmatrix} \leftarrow \text{CholeskyInverse}(A)
\]

\[
\begin{bmatrix} L_{11}, L_{11}^{-1} \end{bmatrix} \leftarrow \text{CholeskyInverse}(A_{11})
\]

\[L_{21} \leftarrow A_{21}L_{11}^{-T}\]

\[
\begin{bmatrix} L_{22}, L_{22}^{-1} \end{bmatrix} \leftarrow \text{CholeskyInverse}(A_{22} - L_{21}L_{21}^{T})
\]

\[L_{21}^{-1} \leftarrow -L_{22}^{-1}L_{21}L_{11}^{-1}\]

\[
T_{\text{CholeskyInverse3D}}(n, P) = 2T^{\alpha-\beta} \left(\frac{n}{2}, P\right) + \mathcal{O}(3D \text{ Matrix Multiplication})
\]
3D recursive CholeskyInverse

\[
\begin{bmatrix} L_{11} & L_{11}^{-1} \end{bmatrix} \leftarrow \text{CholeskyInverse}(A)
\]

\[
L_{21} \leftarrow A_{21} L_{11}^{-T}
\]

\[
\begin{bmatrix} L_{22} & L_{22}^{-1} \end{bmatrix} \leftarrow \text{CholeskyInverse}(A_{22} - L_{21} L_{21}^{-T})
\]

\[
L_{21}^{-1} \leftarrow -L_{22}^{-1} L_{21} L_{11}^{-1}
\]

\[
T_{\text{CholeskyInverse3D}}(n, P) = 2 T^{\alpha - \beta} \left(\frac{n}{2}, P \right) + \mathcal{O}(3D \text{ Matrix Multiplication})
\]

\[
T_{\text{CholeskyInverse3D}}(n, P) = \mathcal{O} \left(P^{2 \frac{2}{3}} \log P \cdot \alpha + \frac{n^2}{P^{2 \frac{2}{3}}} \cdot \beta + \frac{n^3}{P} \cdot \gamma \right)
\]
TRSM3D is an option to reduce computation cost by 2 at the highest levels of recursion.

- Skip two matrix multiplications by not obtaining L_{21}^{-1}.
- Utilize diagonally inverted blocks and iterate along column panels.
- Two 3D Matrix Multiplications per iteration to solve for panel and update trailing matrix.
Figure: $A^T A$ over a tunable $c \times d \times c$ processor grid
Figure: Start with a tunable $c \times d \times c$ processor grid
Figure: Broadcast columns of A

Cost: $2 \log_2 c \cdot \alpha + \frac{2mn}{dc} \cdot \beta$
Figure: Reduce contiguous groups of size c

Cost: $2 \log_2 c \cdot \alpha + \frac{2n^2}{c^2} \cdot \beta + \frac{n^2}{c^2} \cdot \gamma$
Figure: Allreduce alternating groups of size $\frac{d}{c}$

Cost: $2 \log_2 \frac{d}{c} \cdot \alpha + \frac{2n^2}{c^2} \cdot \beta + \frac{n^2}{c^2} \cdot \gamma$
Figure: Broadcast missing pieces of B along depth

Cost: $2 \log_2 c \cdot \alpha + \frac{2n^2}{c^2} \cdot \beta$
Figure: $\frac{d}{c}$ simultaneous 3D CholeskyInverse on cubes of dimension c

Cost: $\mathcal{O} \left(c^2 \log c^3 \cdot \alpha + \frac{n^2}{c^2} \cdot \beta + \frac{n^3}{c^3} \cdot \gamma \right)$
Figure: \(\frac{d}{c} \) simultaneous 3D matrix multiplication or TRSM on cubes of dimension \(c \)

\[
\begin{align*}
Q &= AR^{-1} \\
\text{Cost: } O &\left(2 \log_2 c^3 \cdot \alpha + \left(\frac{4mn}{dc} + \frac{n^2 + nc}{c^2}
ight) \cdot \beta + \frac{n^2m}{c^2d} \cdot \gamma\right)
\end{align*}
\]
Figure: Tunable Cholesky-QR2 Algorithm

\[B = A^T A \]

Broadcast columns
- AllReduce contiguous groups of size \(c \)
- AllReduce alternating groups of size \(d/c \)
- Broadcast along depth

\[B = R^T R \]

\[Q = AR^{-1} \]

d/c simultaneous 3D Cholesky Inverses on cubes of dimension \(c \)
d/c simultaneous 3D Matrix Multiplications or TRSM on cubes of dimension \(c \)

Edward Hutter
Parallel 3D Cholesky-QR2
By setting \(\frac{m}{d} = \frac{n}{c} \) and enforcing \(P = c^2 d \), we are able to solve for the optimal grid and minimize communication.

<table>
<thead>
<tr>
<th></th>
<th>1D CholeskyQR2</th>
<th>2D Householder QR</th>
<th>2D CAQR-HR</th>
<th>optimal</th>
</tr>
</thead>
<tbody>
<tr>
<td># of messages</td>
<td>(\mathcal{O} (\log P))</td>
<td>(n \log P)</td>
<td>(\sqrt{P} \log P)</td>
<td>(\mathcal{O} \left(\left(\frac{P n}{m} \right)^{\frac{2}{3}} \log P \right))</td>
</tr>
<tr>
<td># of words</td>
<td>(\mathcal{O} \left(n^2 \right))</td>
<td>(\mathcal{O} \left(\frac{mn}{\sqrt{P}} \right))</td>
<td>(\mathcal{O} \left(\frac{mn}{\sqrt{P}} \right))</td>
<td>(\mathcal{O} \left(\left(\frac{n^2 m}{P} \right)^{\frac{2}{3}} \right))</td>
</tr>
<tr>
<td># of flops</td>
<td>(\mathcal{O} \left(\frac{n^2 m}{P} + n^3 \right))</td>
<td>(\mathcal{O} \left(\frac{mn^2}{P} \right))</td>
<td>(\mathcal{O} \left(\frac{mn^2}{P} \right))</td>
<td>(\mathcal{O} \left(\frac{n^2 m}{P} \right))</td>
</tr>
<tr>
<td>Memory footprint</td>
<td>(\mathcal{O} \left(\frac{mn}{P} + n^2 \right))</td>
<td>(\mathcal{O} \left(\frac{mn}{P} \right))</td>
<td>(\mathcal{O} \left(\frac{mn}{P} \right))</td>
<td>(\mathcal{O} \left(\left(\frac{n^2 m}{P} \right)^{\frac{2}{3}} \right))</td>
</tr>
</tbody>
</table>
Implementation and performance testing

- All code written from scratch in modern C++ and MPI
- This is a first implementation
 - TRSM not used in results
 - No overlap in computation and communication
 - No topology-aware mapping
 - No threading except for multi-threaded BLAS
- For each processor count and matrix size:
 - Scalapack PGEQRF was tuned over block sizes and processor grid dimensions
 - CA-CholeskyQR2 was tuned over range of 3D grid dimensions
- Best performance numbers were chosen to compare
Cray XC40 system at Argonne Leadership Computing Facility

- Compute nodes: Intel Knights Landing
 - Each node is a single Xeon Phi chip with 64 cores, 16 GB MCDRAM, 192GB DDR4
 - Each core supports 4 hardware threads, up to 256 threads per node

- Interconnect topology: Cray Aries dual-place Dragonfly with 10 groups

Edward Hutter

Parallel 3D Cholesky-QR2
Architecture details

- **Cray XC40 system at Argonne Leadership Computing Facility**
 - Compute nodes: Intel Knights Landing
 - Each node is a single Xeon Phi chip with 64 cores, 16 GB MCDRAM, 192GB DDR4
 - Each core supports 4 hardware threads, up to 256 threads per node
 - Interconnect topology: Cray Aries dual-place Dragonfly with 10 groups
- **Our configuration:**
 - 16 MPI processes per node, 4 OpenMP threads per process, 2 hyperthreads per core
 - MKL 2018 libraries used for BLAS and LAPACK
 - MKL 2018 SCALAPACK library used as comparison for benchmarking
 - \((d, c)\) pairs for \(c \times d \times c\) processor grid given for each data point
Weak scaling on Theta (XC40)

Cholesky-QR2, \(m = \#\text{nodes} \times 256, n = 128\)
ScaLAPACK QR, \(m = \#\text{nodes} \times 256, n = 128\)
Weak scaling on Theta (XC40)

- **Cholesky-QR2**, $m=\text{#nodes} \times 128$, $n=512$
- **ScaLAPACK QR**, $m=\text{#nodes} \times 128$, $n=512$

Edward Hutter Parallel 3D Cholesky-QR2
Weak scaling on Theta (XC40)

- Cholesky-QR2, $m = \text{#nodes} \times 512$, $n = 1024$
- ScaLAPACK QR, $m = \text{#nodes} \times 512$, $n = 1024$

Edward Hutter
Parallel 3D Cholesky-QR2
Strong scaling on Theta (XC40)

Cholesky-QR2, $m=16384$, $n=256$

ScalAPACK QR, $m=16384$, $n=256$

Edward Hutter Parallel 3D Cholesky-QR2
CholeskyQR2 is outperforming Scalapack on rectangular matrices.

Scalapack is outperforming CholeskyQR2 on tall-and-skinny and near-square matrices.

Both do not show strong scaling to 1024 nodes.

Flop cost is a concern.

- HouseHolder QR performs $2mn^2 - \frac{2n^3}{3}$ flops
- CholeskyQR2 performs $4mn^2 + \frac{5n^3}{3}$ flops

Communication improvement of $O(P^{\frac{1}{6}})$

- Perhaps P is not large enough to make a difference?
Future work

Numerical library integration is our focus. Much work remains
- optimize and tune the code, more large scale numerical tests to better understand performance
- evaluate more tunable grid shapes to further analyze patterns in performance
- develop memory tunable variants for machines without enough memory
- reduce the flop cost and improve the stability

MS87 talk at 3:45 on fixing the stability of CholeskyQR2

Acknowledgement: Argonne Leadership Computing Facility
The advantage of using a tunable grid lies in the ability to frame the shape of the grid around the shape of rectangular $m \times n$ matrix A. Optimal communication can be attained by ensuring that the grid perfectly fits the dimensions of A, or that the dimensions of the grid are proportional to the dimensions of the matrix. We derive the cost for the optimal ratio $\frac{m}{d} = \frac{n}{c}$ below. Using equation $P = c^2 d$ and $\frac{m}{d} = \frac{n}{c}$, solve for d, c in terms of m, n, P.

Solving the system of equations yields $c = (\frac{Pn}{m})^{\frac{1}{3}}$, $d = (\frac{Pm^2}{n^2})^{\frac{1}{3}}$. We can plug these values into the cost of CholeskyQR2_Tunable to find the optimal cost.

$$T_{\text{CholeskyQR2_Tunable}}^{\alpha-\beta} \left(m, n, \left(\frac{Pn}{m}\right)^{\frac{1}{3}}, \left(\frac{Pm^2}{n^2}\right)^{\frac{1}{3}} \right) = O \left(\left(\frac{Pn}{m}\right)^{\frac{2}{3}} \log P \cdot \alpha \right)$$

$$+ \left(\frac{Pm^2}{n^2}\right)^{\frac{1}{3}} \left(\frac{Pn}{m}\right)^{\frac{2}{3}} \beta + \left(\frac{n^2m}{P}\right)^{\frac{2}{3}} + \left(\frac{n^2m}{P}\right)^{\frac{2}{3}} \cdot \gamma \right)$$

$$= O \left(\left(\frac{Pn}{m}\right)^{\frac{2}{3}} \log P \cdot \alpha + \left(\frac{n^2m}{P}\right)^{\frac{2}{3}} \beta + \left(\frac{n^2m}{P}\right)^{\frac{2}{3}} \cdot \gamma \right)$$

<table>
<thead>
<tr>
<th>Grid shape</th>
<th>Metric</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>optimal</td>
<td># of messages</td>
<td>$O \left(\left(\frac{Pn}{m}\right)^{\frac{2}{3}} \log P \right)$</td>
</tr>
<tr>
<td></td>
<td># of words</td>
<td>$O \left(\left(\frac{n^2m}{P}\right)^{\frac{2}{3}} \right)$</td>
</tr>
<tr>
<td></td>
<td># of flops</td>
<td>$O \left(\frac{n^2m}{P} \right)$</td>
</tr>
<tr>
<td></td>
<td>Memory footprint</td>
<td>$O \left(\left(\frac{n^2m}{P}\right)^{\frac{2}{3}} \right)$</td>
</tr>
</tbody>
</table>