QR Factorization over Tunable Processor Grids

Edward Hutter

Laboratory for Parallel Numerical Algorithms
Department of Computer Science
University of Illinois at Urbana-Champaign

July 12, 2017
Abstract

• What:
 ▶ new distributed-memory QR factorization algorithm
 ▶ extends the existing Cholesky-QR2 algorithm to matrices of an arbitrary size and shape
 ▶ takes advantage of a tunable processor grid to provably reduce communication

• Why:
 ▶ practical
 ▶ flexible
 ▶ achieves minimal communication

• Who:
 ▶ Edward Hutter and Edgar Solomonik
Communication model

- Let's define a communication model
 \[\alpha - \beta - \gamma\text{ model}\]

- This model's advantages and disadvantages lie in its simplicity
 - Allows each processor to send and/or receive one message at a time
 - Not "blocking", not synchronous, but blocks to completion
 - No overlap in communication and computation
Key terms

- Lets explore some key terms
 - Synchronization (Latency) cost - α
 - Elapsed time between request and reception of the first byte of data in a message
 - Horizontal (Vertical) bandwidth cost - β
 - Cost to move a byte of data among processors over a network (between levels in a memory hierarchy)
 - Horizontal (Vertical) communication cost - $c_1 \cdot \alpha + c_2 \cdot \beta$
 - Linear combination of synchronization (latency) cost and horizontal (vertical) bandwidth cost
 - Flop cost - γ
 - Cost to compute a floating point operation with register-resident data
 - Critical path - $c_1 \cdot \alpha + c_2 \cdot \beta + c_3 \cdot \gamma$
 - Most expensive chain of dependent execution in the DAG representing the parallel algorithm
 - Stability
 - Ability of an algorithm to suppress input and approximation errors
Why the need to redesign existing numerical linear algebra algorithms?

- Trend in modern machines shows a widening gap between speedups in flop rate, bandwidth, and latency: $\alpha \gg \beta \gg \gamma$

- Algorithm performance on modern machines is dependent on the movement of data

- Therefore, existing algorithms not achieving minimal communication will become less performant over time

- In response, a new field of research has emerged with the goal to redesign existing algorithms from the bottom up in order to achieve minimal communication along the critical path.
Problem Definition

\[A = QR \]

- \(A \) is dense \(m \times n \)
- \(Q \) is \(m \times n \) and orthogonal
- \(R \) is upper triangular \(n \times n \)
Motivation

- Efficient QR factorization algorithms are needed in many applications within the fields of scientific computing and machine learning.
- QR factorization is a key step to solving least squares problems.
Competing QR factorization algorithms

- **Parallel Householder**
 - Restriction: requires $n \log_2 P$ synchronizations between processors

- **Cholesky-QR2**
 - Restriction: memory footprint of order $O(n^2)$ for $m \times n$ matrices

- **TSQR**
 - Restriction: although unconditionally stable and 2x as communication efficient as Cholesky-QR2, scales only for tall-and-skinny matrices

- **Other recent theoretical QR factorization algorithms**
 - Restriction: Not (yet) implemented due to impracticality

Bottom line: Our new tunable algorithm takes the best qualities from the above algorithms, achieving practicality, flexibility, and minimal communication for matrices with a condition number of order $O\left(\frac{1}{\sqrt{\epsilon}}\right)$
Cholesky-QR2 Algorithm

Algorithm 2.1 \([Q, R] \leftarrow \text{CholeskyQR} (A, m, n)\)

Require: \(A\) is \(m \times n\)

1: \(W \leftarrow \text{seq-Syrk} (A, m, n)\)
2: \(R^T \leftarrow \text{seq-Cholesky} (W, n)\)
3: \(Q \leftarrow \text{seq-MM} (A, R^{-1}, m, n, n)\)

Ensure: \(A = QR\), where \(Q\) is \(m \times n\) orthogonal, \(R\) is \(n \times n\) upper triangular

Algorithm 2.2 \([Q, R] \leftarrow \text{CholeskyQR2} (A, m, n)\)

Require: \(A\) is \(m \times n\)

1: \(Q_1, R_1 \leftarrow \text{CholeskyQR} (A)\)
2: \(Q, R_2 \leftarrow \text{CholeskyQR} (Q_1)\)
3: \(R \leftarrow \text{seq-MM}(R_2, R_1, n, n, n)\)

Ensure: \(A = QR\), where \(Q\) is \(m \times n\) orthogonal, \(R\) is \(n \times n\) upper triangular
To devise an efficient parallel CholeskyQR2 algorithm, we need efficient algorithms for:

- Collective communication
- Matrix multiplication
- Cholesky factorization

Some useful costs

\[
T_{\text{seq-MM}}^{\alpha - \beta} (m, n, k) = \mathcal{O}(mnk) \cdot \gamma \\
T_{\text{seq-Subtract}}^{\alpha - \beta} (m, n) = \mathcal{O}(mn) \cdot \gamma \\
T_{\text{seq-Syrk}}^{\alpha - \beta} (m, n) = \mathcal{O}(mn^2) \cdot \gamma \\
T_{\text{seq-Cholesky}}^{\alpha - \beta} (n) = \mathcal{O}(n^3) \cdot \gamma \\
T_{\text{seq-Trilv}}^{\alpha - \beta} (n) = \mathcal{O}(n^3) \cdot \gamma
\]

We also want to define a unit-step function as follows: \(\delta (x) = \begin{cases}
0 & \text{if } x \leq 1 \\
1 & \text{if } x > 1
\end{cases} \)
Collective communication - Broadcast

Figure: Broadcast

\[T_{\text{Bcast}}^{\alpha-\beta}(n, P) = 2 \log_2 P \cdot \alpha + 2n\delta(P) \cdot \beta \]
Collective communication - AllReduce

Figure: AllReduce

$$T^{\alpha-\beta}_{\text{AllReduce}}(n, P) = 2 \log_2 P \cdot \alpha + 2n\delta(P) \cdot \beta + n\delta(P) \cdot \gamma$$
Collective communication - AllGather

$$T_{\text{AllGather}}^{\alpha-\beta} (n, P) = \log_2 P \cdot \alpha + n\delta(P) \cdot \beta$$
Problem Definition

\[C = AB \]

- \(A \) is dense \(m \times k \)
- \(B \) is dense \(k \times n \)
- \(C \) is dense \(m \times n \)

\[
C[i,j] = \sum_{k=1}^{n} A[i,k]B[k,j]
\]

\[
\vec{C}_i = \sum_{i=1}^{n} A\vec{B}_i
\]
Figure: 2D Parallel Matrix Multiplication

\[
P_{\frac{1}{2}} = P_{00} P_{01} P_{02} P_{03} P_{10} P_{11} P_{12} P_{13} P_{20} P_{21} P_{22} P_{23} P_{30} P_{31} P_{32} P_{33}
\]

\[
A_{00} A_{01} A_{02} A_{03} A_{10} A_{11} A_{12} A_{13} A_{20} A_{21} A_{22} A_{23} A_{30} A_{31} A_{32} A_{33}
\]

\[
B_{00} B_{01} B_{02} B_{03} B_{10} B_{11} B_{12} B_{13} B_{20} B_{21} B_{22} B_{23} B_{30} B_{31} B_{32} B_{33}
\]

\[
C_{21} = A_{23} B_{31} + A_{20} B_{01} + A_{21} B_{11} + A_{22} B_{21}
\]

How many partial products? \(p^{\frac{1}{2}} \)

If processor grid was size \(k \times k \) \(\rightarrow \) \(k \) partial products

\[
C_{ij} = A_{i0} B_{0j} + A_{i1} B_{1j} + A_{i2} B_{2j} + A_{i3} B_{3j}
\]
Figure: Matrix Multiplication 3D Algorithm

C = AB

Broadcast across rows
Broadcast along columns
AllReduce along depth

Cyclic distribution
Algorithm 2.3 $[C] \leftarrow \text{MatrixMultiplication3D}(A, B, m, n, k, \Pi, i, j, k)$

Require: Π has P processors arranged in a 3D grid. Matrices A and B are replicated on $\Pi[:, :, k], \forall k \in [0, P^{\frac{1}{3}} - 1]$. Each processor $\Pi[i, j, k]$ owns a cyclic partition of $m \times n$ matrix A and $n \times k$ matrix B. We call these local matrices A_{ij} and B_{ij}, respectively. These matrix partitions are condensed into 1D row-major arrays of size $\frac{mn}{P^{\frac{2}{3}}}$ and $\frac{nk}{P^{\frac{2}{3}}}$, respectively. Let $X, Y,$ and Z be temporary arrays with the same distribution as A and B.

1: Bcast($A_{kj}, X_{ij}, k, \Pi[:, :, k]$)
 \triangleright Broadcast from root k across row i

2: Bcast($B_{ik}, Y_{ij}, k, \Pi[i, :, k]$)
 \triangleright Broadcast from root k along column j

3: $Z_{ij} \leftarrow \text{seq-MM}(X_{ij}, Y_{ij}, \frac{n}{P^{\frac{1}{3}}})$

4: Allreduce($Z_{ij}, C_{ij}, \Pi[i, j, :]$)
 \triangleright AllReduce along the depth of 3D grid

Ensure: $C = AB$, where C is $m \times k$ and distributed the same way as A and B.
Table: Costs of MatrixMultiplication3D.

<table>
<thead>
<tr>
<th>Line Number</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$2 \log_2 P \frac{1}{3} \cdot \alpha + \frac{2mn\delta(P)}{P^2} \cdot \beta$</td>
</tr>
<tr>
<td>2</td>
<td>$2 \log_2 P \frac{1}{3} \cdot \alpha + \frac{2nk\delta(P)}{P^2} \cdot \beta$</td>
</tr>
<tr>
<td>3</td>
<td>$O\left(\frac{mnk}{P}\right) \cdot \gamma$</td>
</tr>
<tr>
<td>4</td>
<td>$2 \log_2 P \frac{1}{3} \cdot \alpha + \frac{2mk\delta(P)}{P^2} \cdot \beta + \frac{mk\delta(P)}{P^2} \cdot \gamma$</td>
</tr>
</tbody>
</table>

$$T_{\text{MatrixMultiplication3D}}^\alpha - \beta (m, n, k, P) = 6 \log_2 P \frac{1}{3} \cdot \alpha + \frac{(2mn + 2nk + 2mk) \delta(P)}{P^2} \cdot \beta$$

$$+ O\left(\frac{mk\delta(P)}{P^3} + \frac{mnk}{P}\right) \cdot \gamma$$

$$= O\left(\log P \cdot \alpha + \frac{(mn + nk + mk) \delta(P)}{P^2} \cdot \beta + \frac{mnk}{P} \cdot \gamma\right)$$
Cholesky Factorization

Problem Definition

\[A = LL^T \]

- \(A \) is dense \(n \times n \), symmetric and positive definite
- \(L \) is lower triangular \(n \times n \)
Derivation of recursive Cholesky Factorization

\[
\begin{bmatrix}
A_{11} & A_{21} \\
A_{21} & A_{22}
\end{bmatrix}
= \begin{bmatrix}
L_{11} & L_{21} \\
L_{21} & L_{22}
\end{bmatrix}
\begin{bmatrix}
L_{11}^T & L_{21}^T \\
L_{21}^T & L_{22}
\end{bmatrix}
\]

\[
A_{11} = L_{11}L_{11}^T
\]

\[
A_{21} = L_{21}L_{11}^T
\]

\[
A_{22} = L_{21}L_{21}^T + L_{22}L_{22}^T
\]

\[
L_{11} = \text{Cholesky}(A_{11})
\]

\[
L_{21} = A_{21}L_{11}^{-T}
\]

\[
L_{22} = \text{Cholesky}(A_{22} - L_{21}L_{21}^T)
\]

\[
\begin{bmatrix}
L_{11} & 0 \\
L_{21} & L_{22}
\end{bmatrix}
\begin{bmatrix}
L_{11}^{-1} & L_{12}^{-1} \\
L_{21} & L_{22}
\end{bmatrix}
= \begin{bmatrix}
I_n & 0 \\
0 & I_n
\end{bmatrix}
\]

\[
L_{11}^{-1} = (L_{11})^{-1}
\]

\[
L_{21}^{-1} = -L_{22}^{-1}L_{21}L_{11}^{-1}
\]

\[
L_{22}^{-1} = (L_{22})^{-1}
\]

\[
\begin{bmatrix}
L_{11} & L_{11}^{-1} \\
L_{21} & L_{22}
\end{bmatrix}
\begin{bmatrix}
L_{22}^{-1} & 0 \\
-L_{22}^{-1}L_{21}L_{11}^{-1} & L_{22}^{-1}
\end{bmatrix}
= \text{CholeskyInverse}(A)
\]

\[
L = \begin{bmatrix}
L_{11} & 0 \\
L_{21} & L_{22}
\end{bmatrix}
\]

\[
L^{-1} = \begin{bmatrix}
L_{11}^{-1} & 0 \\
-L_{22}^{-1}L_{21}L_{11}^{-1} & L_{22}^{-1}
\end{bmatrix}
\]
Figure: Need for transpose with cyclic distribution
Figure: CholeskyFactorization3D Algorithm
Algorithm 2.4 \([L, L^{-1}] \leftarrow \text{CholeskyFactorization3D} (A, n, n_o, \Pi, i, j, k) \)

Require: \(\Pi \) has \(P \) processors arranged in a 3D grid. Matrix \(A \) is of dimension \(n \), symmetric, and positive definite. \(A \) is replicated on \(\Pi[\cdot, \cdot, k], \forall k \in [0, P \frac{1}{3} - 1] \). Each processor \(\Pi[i, j, k] \) owns a cyclic partition of \(A \) known as \(A_{ij} \). \(A_{ij} \) is packed into a 1D array of size \(\left(\frac{n}{2} \right) \left(\frac{n}{2} + 1 \right) \). Let \(n_o \) be the matrix dimension in which we call the base case. Let \(\text{TopLeft} \) and \(\text{BottomRight} \) be lower triangular portions of dimension \(\frac{n}{2} \) square submatrices in the upper-left quadrant and lower-right quadrants of a matrix, respectively. Let \(\text{BottomLeft} \) be the square submatrix in the lower-left quadrant. Let \(T, W, X, Y, \) and \(Z \) be temporary arrays, distributed the same way as \(A \).

1: if \(n = n_o \) then
2: \(\text{AllGather} (A_{ij}, T_{ij}, \Pi[\cdot, \cdot, k]) \)
3: \(L_{ij} \leftarrow \text{seq-Cholesky} (T_{ij}, n) \)
4: \(L_{ij}^{-1} \leftarrow \text{seq-Trilv} (L_{ij}, n) \)
5: else
6: \(L[\text{TopLeft}], L^{-1}[\text{TopLeft}] \leftarrow \text{CholeskyFactorization3D} \left(A[\text{TopLeft}], \frac{n}{2}, n_o, \Pi, i, j, k \right) \)
7: \(W_{ij} \leftarrow \text{Transpose} \left(L_{ij}^{-1}[\text{TopLeft}], \Pi[j, i, k] \right) \)
8: \(L[\text{BottomLeft}] \leftarrow \text{MatrixMultiply3D} \left(A[\text{BottomLeft}], W^T, \frac{n}{2}, \frac{n}{2}, \frac{n}{2}, \Pi, i, j, k \right) \)
9: \(X_{ij} \leftarrow \text{Transpose} \left(L_{ij}[\text{BottomLeft}], \Pi[j, i, k] \right) \)
10: \(Y \leftarrow \text{MatrixMultiply3D} \left(L[\text{BottomLeft}], X^T, \frac{n}{2}, \frac{n}{2}, \frac{n}{2}, \Pi, i, j, k \right) \)
11: \(Z_{ij} \leftarrow \text{seq-Subtract} \left(A_{ij}[\text{BottomRight}], Y_{ij}, \frac{n}{2} \right) \)
12: \(L[\text{BottomRight}], L^{-1}[\text{BottomRight}] \leftarrow \text{CholeskyFactorization3D} \left(Z, \frac{n}{2}, n_o, \Pi, i, j, k \right) \)
13: \(Y \leftarrow \text{MatrixMultiply3D} \left(L[\text{BottomLeft}], L^{-1}[\text{TopLeft}], \frac{n}{2}, \frac{n}{2}, \frac{n}{2}, \Pi, i, j, k \right) \)
14: \(W \leftarrow (-1) \cdot L^{-1}[\text{BottomRight}] \)
15: \(L^{-1}[\text{BottomLeft}] \leftarrow \text{MatrixMultiply3D} \left(W, Y, \frac{n}{2}, \frac{n}{2}, \frac{n}{2}, \Pi, i, j, k \right) \)

Ensure: \(A = LL^T, L^{-1} = (L)^{-1} \), where matrices \(L \) and \(L^{-1} \) are distributed the same way as \(A \).
Table: Costs of CholeskyFactorization3D.

<table>
<thead>
<tr>
<th>Line Number</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>$\log_2 P \frac{2}{3} \cdot \alpha + n_o^2 \delta (P) \cdot \beta$</td>
</tr>
<tr>
<td>3</td>
<td>$\mathcal{O} \left(\frac{n_o^3}{P} \right) \cdot \gamma$</td>
</tr>
<tr>
<td>4</td>
<td>$\mathcal{O} \left(\frac{n_o^3}{P} \right) \cdot \gamma$</td>
</tr>
<tr>
<td>7</td>
<td>$\delta (P) \cdot \alpha + \frac{n}{2} \frac{(n^2 + 1) \delta (P)}{2} \cdot \beta$</td>
</tr>
<tr>
<td>8</td>
<td>$2 \log_2 P \cdot \alpha + \frac{(5n^2 + 2n) \delta (P)}{4P \frac{2}{3}} \cdot \beta + \mathcal{O} \left(\frac{n^3}{P} \right) \cdot \gamma$</td>
</tr>
<tr>
<td>9</td>
<td>$\delta (P) \cdot \alpha + \frac{n^2 \delta (P)}{4P \frac{2}{3}} \cdot \beta$</td>
</tr>
<tr>
<td>10</td>
<td>$2 \log_2 P \cdot \alpha + \frac{3n^2 \delta (P)}{2P \frac{2}{3}} \cdot \beta + \mathcal{O} \left(\frac{n^3}{P} \right) \cdot \gamma$</td>
</tr>
<tr>
<td>11</td>
<td>$\mathcal{O} \left(\frac{n^2}{P \frac{2}{3}} \right) \cdot \gamma$</td>
</tr>
<tr>
<td>13</td>
<td>$2 \log_2 P \cdot \alpha + \frac{(5n^2 + 2n) \delta (P)}{4P \frac{2}{3}} \cdot \beta + \mathcal{O} \left(\frac{n^3}{P} \right) \cdot \gamma$</td>
</tr>
<tr>
<td>14</td>
<td>$\mathcal{O} \left(\frac{n^2}{P \frac{2}{3}} \right) \cdot \gamma$</td>
</tr>
<tr>
<td>15</td>
<td>$2 \log_2 P \cdot \alpha + \frac{(5n^2 + 2n) \delta (P)}{4P \frac{2}{3}} \cdot \beta + \mathcal{O} \left(\frac{n^3}{P} \right) \cdot \gamma$</td>
</tr>
</tbody>
</table>
Further analysis of CholeskyFactorization3D

$$T_{\text{CholeskyBaseCase}}^{{\alpha - \beta}} (n_0, P) = \log_2 P \frac{2}{3} \cdot \alpha + n_0^2 \delta (P) \cdot \beta + \mathcal{O} \left(n_0^3 \right) \cdot \gamma$$

$$= \mathcal{O} \left(\log P \cdot \alpha + n_0^2 \delta (P) \cdot \beta + n_0^3 \cdot \gamma \right)$$

Choice of n_0 depends on the non-recursive communication cost. Because $\frac{n}{2^z} = n_0$, our algorithm must compute $\frac{n}{n_0}$ AllGathers.

$$T_{\text{CholeskyFactorization3D}}^{{\alpha - \beta}} (n, P) = 2 T_{\text{CholeskyFactorization3D}}^{{\alpha - \beta}} \left(\frac{n}{2}, P \right) + (8 \log_2 P + 2 \delta (P)) \cdot \alpha$$

$$+ \frac{22.5 n^2 + 7 n}{4 P^2} \cdot \beta + \mathcal{O} \left(\frac{n^3}{P} \right) \cdot \gamma$$

$$= 2 T_{\text{CholeskyFactorization3D}}^{{\alpha - \beta}} \left(\frac{n}{2}, P \right) + \mathcal{O} \left(\log P \cdot \alpha + \frac{n^2 \delta (P)}{P^2} \cdot \beta + \frac{n^3}{P} \cdot \gamma \right)$$

$$= 2^z T_{\text{CholeskyBaseCase}}^{{\alpha - \beta}} (n_0, P) + \sum_{q=0}^{z-1} 2^q \cdot \mathcal{O} \left(\log P \cdot \alpha + \frac{\left(\frac{n}{2^q} \right)^2 \delta (P)}{P^2} \cdot \beta + \frac{\left(\frac{n}{2^q} \right)^3}{P} \cdot \gamma \right)$$

$$= \mathcal{O} \left(\frac{n \log P}{n_0} \cdot \alpha + n n_0 \delta (P) \cdot \beta + n n_0^2 \cdot \gamma \right) + \mathcal{O} \left(\frac{n \log P}{n_0} \cdot \alpha + \frac{n^2 \delta (P)}{P^2} \cdot \beta + \frac{n^3}{P} \cdot \gamma \right)$$

Choice of $\frac{n}{n_0}$ creates a tradeoff between the synchronization cost and the communication cost. We elect to match the communication cost at the expense of an increase in synchronization, giving the relation $n_o = \frac{n}{P^{\frac{2}{3}}}$. The final cost of the 3D algorithm is the following:

$$T_{\text{CholeskyFactorization}} (n, P) = \mathcal{O} \left(P^{\frac{2}{3}} \log P \cdot \alpha + \frac{n^2 \delta (P)}{P^2} \cdot \beta + \frac{n^3}{P} \cdot \gamma \right)$$
Figure: CholeskyQR2_1D Algorithm

\[A^T = A_1^T A_2^T A_3^T A_4^T A_5^T A_6^T A_7^T A_8^T = B_1 \]

\[B = R^T R \]

\[Q = AR^{-1} \]
Algorithm 2.5 \([Q, R] \leftarrow \text{CholeskyQR_1D}(A, m, n, \Pi_1, p)\)

Require: \(\Pi_1\) has \(P\) processors arranged in a 1D grid. Each processor \(\Pi_1[p]\) owns a (cyclic) blocked partition of \(m \times n\) input matrix \(A\) known as \(A_p\). \(A_p\) is packed into a 1D array of size \(\frac{mn}{p}\), where it owns a rectangular piece of size \(\frac{m}{p} \times n\). Let \(X\) and \(Y\) be temporary arrays.

1: \(X_p \leftarrow \text{seq-Syrk}(A_p, m, n)\) \(\triangleright X_p \leftarrow A_p^T A_p\)
2: \(\text{AllReduce}(X_p, Y_p, \Pi_1)\) \(\triangleright Y \leftarrow A^T A\)
3: \(R^T \leftarrow \text{seq-Cholesky}(Y, n)\) \(\triangleright Y = R^T R\)
4: \(R^{-T} \leftarrow \text{seq-Trilnv}(R^T, n)\) \(\triangleright R^{-T} \leftarrow (R^T)^{-1}\)
5: \(Q_p \leftarrow \text{seq-MM}(A_p, R^{-1}, m, n, n)\) \(\triangleright Q \leftarrow A R^{-1}\)

Ensure: \(A = QR\), where \(Q\) is distributed the same as \(A\), \(R\) is an upper triangular matrix of dimension \(n\) owned locally by every processor and packed into a 1D array of size \(\frac{n(n+1)}{2}\).

Algorithm 2.6 \([Q, R] \leftarrow \text{CholeskyQR2_1D}(A, m, n, \Pi_1, p)\)

Require: Same requirements as Algorithm 3.

1: \(X, Y \leftarrow \text{CholeskyQR_1D}(A, m, n, \Pi_1, p)\)
2: \(Q, Z \leftarrow \text{CholeskyQR_1D}(X, m, n, \Pi_1, p)\)
3: \(R \leftarrow \text{seq-MM}(Z, Y, n, n, n)\)

Ensure: Same requirements as Algorithm 2.5.
Cost analysis for CholeskyQR_1D

Table: Costs of CholeskyQR_1D.

<table>
<thead>
<tr>
<th>Line Number</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$\mathcal{O} \left(\frac{n^2 m}{P} \right) \cdot \gamma$</td>
</tr>
<tr>
<td>2</td>
<td>$2 \log_2 P \cdot \alpha + n^2 \delta(P) \cdot \beta + \frac{n^2}{2} \cdot \gamma$</td>
</tr>
<tr>
<td>3</td>
<td>$\mathcal{O} \left(n^3 \right) \cdot \gamma$</td>
</tr>
<tr>
<td>4</td>
<td>$\mathcal{O} \left(n^3 \right) \cdot \gamma$</td>
</tr>
<tr>
<td>5</td>
<td>$\mathcal{O} \left(\frac{n^2 m}{P} \right) \cdot \gamma$</td>
</tr>
</tbody>
</table>

$T_{\text{CholeskyQR_1D}}^{\alpha - \beta} (m, n, P) = 2 \log_2 P \cdot \alpha + n^2 \delta(P) \cdot \beta + \mathcal{O} \left(\frac{n^2 m}{P} + n^3 \right) \cdot \gamma$ \hspace{1cm} (1)

Table: Costs of CholeskyQR2_1D.

<table>
<thead>
<tr>
<th>Line Number</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$2 \log_2 P \cdot \alpha + n^2 \delta(P) \cdot \beta + \mathcal{O} \left(\frac{n^2 m}{P} + n^3 \right) \cdot \gamma$</td>
</tr>
<tr>
<td>2</td>
<td>$2 \log_2 P \cdot \alpha + n^2 \delta(P) \cdot \beta + \mathcal{O} \left(\frac{n^2 m}{P} + n^3 \right) \cdot \gamma$</td>
</tr>
<tr>
<td>3</td>
<td>$\mathcal{O} \left(n^3 \right) \cdot \gamma$</td>
</tr>
</tbody>
</table>
Further analysis for CholeskyQR_1D

\[T_{\text{CholeskyQR2}_1D}^{\alpha-\beta} (m, n, P) = 4 \log_2 P \cdot \alpha + 2n^2 \delta (P) \cdot \beta + \mathcal{O} \left(\frac{n^2 m}{P} + n^3 \right) \cdot \gamma \]

\[= \mathcal{O} \left(\log P \cdot \alpha + n^2 \delta (P) \cdot \beta + \left(\frac{n^2 m}{P} + n^3 \right) \cdot \gamma \right) \]

Varying \(\frac{m}{P} \) and \(n \) can lead to different asymptotic costs and advantages and disadvantages in practice.

Table: Costs of CholeskyQR2_1D with varying block sizes.

<table>
<thead>
<tr>
<th>(\frac{m}{P})</th>
<th>(\mathcal{O} \left(\log P \cdot \alpha + n^2 \delta (P) \cdot \beta + \frac{n^2 m}{P} \cdot \gamma \right))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{m}{P} > n)</td>
<td>(\mathcal{O} \left(\log P \cdot \alpha + n^2 \delta (P) \cdot \beta + \frac{n^2 m}{P} \cdot \gamma \right))</td>
</tr>
<tr>
<td>(\frac{m}{P} \leq n)</td>
<td>(\mathcal{O} \left(\log P \cdot \alpha + n^2 \delta (P) \cdot \beta + n^3 \cdot \gamma \right))</td>
</tr>
</tbody>
</table>

This algorithm achieves poor scalability in communication, computation, and memory footprint. Regardless of \(P \), the AllGather distributes an \(n \times n \) matrix onto each processor and as \(n \) grows the matrix won’t fit into a reasonably sized memory.
Figure: Cholesky-QR2 3D Algorithm

B = A^T A

B = R^T R

Q = AR^{-1}

3D Cholesky Factorization

3D Matrix Multiplication

Broadcast columns to get corresponding A^T

Reduce along columns

Broadcast along depth
Algorithm 2.7 \([Q, R] \leftarrow \text{CholeskyQR}_3\text{D}(A, m, n, \Pi, i, j, k)\)

Require: \(\Pi\) has \(P\) processors arranged in a 3D grid. \(A\) is \(m \times n\) and is replicated on \(\Pi[:, :, k], \forall k \in [0, P\frac{1}{3} - 1]\). Each processor \(\Pi[i, j, k]\) owns a (cyclic) blocked partition of \(A\) known as \(A_{ji}\). \(A_{ji}\) is packed into a 1D array of size \(\frac{mn}{P\frac{2}{3}}\), where it owns a rectangular piece of size \(\frac{m}{P\frac{1}{3}} \times \frac{n}{P\frac{1}{3}}\). Let \(W, X, Y, Z,\) and \(R^{-1}\) be temporary arrays distributed the same as \(A\).

1: Bcast \((A_{jk}, W_{ji}, k, \Pi[:, :, k])\) \(\triangleright\) Broadcast from root \(k\) across row \(i\)

2: \(X_{ji} \leftarrow \text{seq-MM} \left(\frac{n}{P\frac{1}{3}}, \frac{m}{P\frac{1}{3}}, \frac{n}{P\frac{1}{3}}\right)\)

3: Reduce \((X_{ji}, Y_{ki}, k, \Pi[i, :, k])\) \(\triangleright\) Reduce along each column to root \(k\)

4: Bcast \((Y_{ki}, Z_{ji}, k, \Pi[i, j, :])\) \(\triangleright\) Every 2D slice owns same matrix \(B = A^T\)

5: \(R^T, R^{-T} \leftarrow \text{CholeskyFactorization3D} \left(\frac{n}{P\frac{2}{3}}, \Pi, i, j, k\right)\)

6: \(Q \leftarrow \text{MatrixMultiplication3D} \left(A, R^{-1}, m, n, n, \Pi, i, j, k\right)\)

Ensure: \(A = QR\), where \(Q\) and \(R\) are distributed the same as \(A\). \(Q\) is \(m \times n\) and \(R\) is an upper triangular matrix of dimension \(n\).

Algorithm 2.8 \([Q, R] \leftarrow \text{CholeskyQR2}_3\text{D}(A, m, n, \Pi, i, j, k)\)

Require: Same requirements as Algorithm 5.

1: \(X, Y \leftarrow \text{CholeskyQR}_3\text{D}(A, m, n, \Pi, i, j, k)\)
2: \(Q, Z \leftarrow \text{CholeskyQR}_3\text{D}(X, m, n, \Pi, i, j, k)\)
3: \(R \leftarrow \text{MatrixMultiplication3D}(Z, Y, n, n, n, \Pi, i, j, k)\)

Ensure: Same requirements as Algorithm 7.
Cost analysis of CholeskyQR_3D

Table: Costs of CholeskyQR_3D.

<table>
<thead>
<tr>
<th>Line Number</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(2 \log_2 P \frac{1}{3} \cdot \alpha + \frac{2nm\delta(P)}{P\frac{2}{3}} \cdot \beta)</td>
</tr>
<tr>
<td>2</td>
<td>(O \left(\frac{n^2 m}{P} \right) \cdot \gamma)</td>
</tr>
<tr>
<td>3</td>
<td>(2 \log_2 P \frac{1}{3} \cdot \alpha + \frac{2n^2 \delta(P)}{P\frac{2}{3}} \cdot \beta + \frac{n^2 \delta(P)}{P\frac{2}{3}} \cdot \gamma)</td>
</tr>
<tr>
<td>4</td>
<td>(2 \log_2 P \frac{1}{3} \cdot \alpha + \frac{2n^2 \delta(P)}{P\frac{2}{3}} \cdot \beta)</td>
</tr>
<tr>
<td>5</td>
<td>(O \left(P\frac{2}{3} \log P \cdot \alpha + \frac{n^2 \delta(P)}{P\frac{2}{3}} \cdot \beta + \frac{n^3}{P} \cdot \gamma \right))</td>
</tr>
<tr>
<td>6</td>
<td>(2 \log_2 P \cdot \alpha + \left(\frac{4mn+n^2+nP\frac{1}{3}}{P\frac{2}{3}} \right) \delta(P) \cdot \beta + O \left(\frac{n^2 m}{P} \right) \cdot \gamma)</td>
</tr>
</tbody>
</table>

\[T_{\text{CholeskyQR}_3D}^{\alpha-\beta} (m, n, P) = O \left(P\frac{2}{3} \log P \cdot \alpha + \left(\frac{n^2 + nm}{P\frac{2}{3}} \right) \delta(P) \cdot \beta + \frac{n^2 m + n^3}{P} \cdot \gamma \right)\] (2)
Further analysis of CholeskyQR_3D

Table: Costs of CholeskyQR_2_3D.

<table>
<thead>
<tr>
<th>Line Number</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(O \left(\frac{P^2}{3} \log P \cdot \alpha + \frac{(n^2 + nm) \delta(P)}{P^2} \cdot \beta + \frac{n^2m + n^3}{P} \cdot \gamma \right))</td>
</tr>
<tr>
<td>2</td>
<td>(O \left(\frac{P^2}{3} \log P \cdot \alpha + \frac{(n^2 + nm) \delta(P)}{P^2} \cdot \beta + \frac{n^2m + n^3}{P} \cdot \gamma \right))</td>
</tr>
<tr>
<td>3</td>
<td>(2 \log_2 P \cdot \alpha + \frac{(3n^2 + 6nP^\frac{1}{3}) \delta(P)}{2P^2} \cdot \beta + O \left(\frac{n^3}{P^3} \right) \cdot \gamma)</td>
</tr>
</tbody>
</table>

\[T_{\text{CholeskyQR_2_3D}}^{\alpha - \beta} (m, n, P) = O \left(\frac{P^2}{3} \log P \cdot \alpha + \frac{(n^2 + nm) \delta(P)}{P^2} \cdot \beta + \frac{n^2m + n^3}{P} \cdot \gamma \right) \] (3)

Table: Costs of CholeskyQR_2_3D with varying block sizes.

| \(m > n \) | \(O \left(\frac{P^2}{3} \log P \cdot \alpha + \frac{nm\delta(P)}{P^2} \cdot \beta + \frac{n^2m}{P} \cdot \gamma \right) \) |
| \(m \leq n \) | \(O \left(\frac{P^2}{3} \log P \cdot \alpha + \frac{n^2\delta(P)}{P^2} \cdot \beta + \frac{n^3}{P} \cdot \gamma \right) \) |

This algorithm is most communication efficient when \(m = n \).
Figure: Tunable Cholesky-QR2 Algorithm
Figure: Tunable Cholesky-QR2 Algorithm

\[B = A^T A \]

Broadcast columns
AllReduce contiguous groups of size \(c \)
AllReduce alternating groups of size \(d/c \)
Broadcast along depth

\[B = R^T R \]

D/C simultaneous 3D Cholesky Factorizations on cubes of dimension \(C \)

D/C simultaneous 3D Matrix Multiplications on cubes of dimension \(C \)
Algorithm 2.9 \([Q, R] \leftarrow \text{CholeskyQR\textunderscore Tunable}(A, m, n, \Pi_T, i, j, k)\)

Require: \(\Pi_T\) has \(P\) processors arranged in a tunable grid of size \(c \times d \times c\) for any integer \(c\) in range \([0, \lfloor P^{\frac{1}{3}} \rfloor - 1]\). \(A\) is \(m \times n\) and is replicated on \(\Pi_T[:, :, k], \forall k \in [0, c - 1]\). Each processor \(\Pi_T[i, j, k]\) owns a (cyclic) blocked partition of \(A\) known as \(A_{ji}\). \(A_{ji}\) is packed into a 1D array of size \(\frac{mn}{dc}\), where it owns a rectangular piece of size \(\frac{m}{d} \times \frac{n}{c}\). Let \(W, X, Y, Z,\) and \(R^{-1}\) be temporary arrays distributed the same as \(A\).

1: \(\text{Bcast}(A_{jk}, W_{ji}, k, \Pi_T[:, :, k])\) \(\triangleright\) Broadcast from root \(k\) across row \(i\)
2: \(X_{ji} \leftarrow \text{seq-MM}(W_{ji}^T, A_{ji}, \frac{n}{c}, \frac{m}{d}, \frac{n}{c})\)
3: \(\text{AllReduce}(X_{ji}, Y_{ji}, \Pi_T[i, c \cdot \lfloor \frac{i}{c} \rfloor : (c + 1) \cdot \lfloor \frac{i}{c} \rfloor, k])\) \(\triangleright\) AllReduce among groups of \(c\) along each column
4: \(\text{AllReduce}(Y_{ji}, Z_{ji}, \Pi_T[i, c : c : d, k])\) \(\triangleright\) AllReduce among groups of \(c\) of size \(c\) distance away along each column
5: \(\text{Bcast}(Z_{ji}, Z_{ji}, k, \Pi_T[i, j, :])\) \(\triangleright\) Every 2D slice owns the same matrix \(B = A^T\)
6: Define \(\Pi_3 \leftarrow \Pi_T[:, c \cdot \lfloor \frac{i}{c} \rfloor : (c + 1) \cdot \lfloor \frac{i}{c} \rfloor, :]\) \(\triangleright\) Split rectangular processor grid into cubic grid of dimension \(c\)
7: \(R^T, R^{-T} \leftarrow \text{CholeskyFactorization3D}(Z, n, \frac{n}{2}, \Pi_3, i, j \mod c, k)\)
8: \(Q \leftarrow \text{MatrixMultiplication3D}(A, R^{-1}, m, n, \Pi_3, i, j \mod c, k)\)

Ensure: \(A = QR\), where \(Q\) and \(R\) are distributed the same as \(A\). \(Q\) is \(m \times n\) and \(R\) is an upper triangular matrix of dimension \(n\).
Algorithm 2.10 \([Q, R] \leftarrow \text{CholeskyQR2_Tunable} (A, m, n, \Pi_T, i, j, k)\)

Require: Same requirements as Algorithm 7.

1: \(X, Y \leftarrow \text{CholeskyQR_Tunable} (A, m, n, \Pi_T, i, j, k)\)
2: \(Q, Z \leftarrow \text{CholeskyQR_Tunable} (X, m, n, \Pi_T, i, j, k)\)
3: Define \(\Pi_1 \leftarrow \Pi_T[\cdot : c \cdot \left\lfloor \frac{j}{c} \right\rfloor : (c + 1) \cdot \left\lfloor \frac{j}{c} \right\rfloor,:]\)
4: \(R \leftarrow \text{MatrixMultiplication3D} (Z, Y, n, \Pi_1, i, j \mod c, k)\)

Ensure: Same requirements as Algorithm 2.9.
Cost analysis for CholeskyQR_Tunable

Table: Costs of CholeskyQR_Tunable.

<table>
<thead>
<tr>
<th>Line Number</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$2 \log_2 c \cdot \alpha + \frac{2mn\delta(c)}{dc} \cdot \beta$</td>
</tr>
<tr>
<td>2</td>
<td>$O \left(\frac{n^2 m}{c^2 d} \right)$</td>
</tr>
<tr>
<td>3</td>
<td>$2 \log_2 c \cdot \alpha + \frac{2n^2\delta(c)}{c^2} \cdot \beta + \frac{n^2\delta(c)}{c^2} \cdot \gamma$</td>
</tr>
<tr>
<td>4</td>
<td>$2 \log_2 \frac{d}{c} \cdot \alpha + \frac{2n^2\delta(d)}{c^2} \cdot \beta + \frac{n^2\delta(d)}{c^2} \cdot \gamma$</td>
</tr>
<tr>
<td>5</td>
<td>$2 \log_2 c \cdot \alpha + \frac{2mn\delta(c)}{dc} \cdot \beta$</td>
</tr>
<tr>
<td>6</td>
<td>$O \left(c^2 \log c^3 \cdot \alpha + \frac{n^2\delta(c)}{c^2} \cdot \beta + \frac{n^3}{c^3} \cdot \gamma \right)$</td>
</tr>
<tr>
<td>7</td>
<td>$2 \log_2 c^3 \cdot \alpha + \left(\frac{4mn\delta(c)}{dc} + \frac{(n^2 + nc)\delta(c)}{c^2} \right) \cdot \beta + O \left(\frac{n^2 m}{c^2 d} \right) \cdot \gamma$</td>
</tr>
</tbody>
</table>

$$T_{\text{CholeskyQR-Tunable}}^{\alpha - \beta} (m, n, c, d) = O \left(c^2 \log c + \log \frac{d}{c} \right) \cdot \alpha$$

$$+ \left(\frac{mn\delta(c)}{dc} + \frac{n^2\delta(c)}{c^2} + \frac{n^2\delta(d)}{c^2} \right) \cdot \beta + \left(\frac{n^3}{c^3} + \frac{n^2 m}{c^2 d} \right) \cdot \gamma$$

$$= O \left(c^2 \log P \cdot \alpha + \frac{cmn\delta(c) + n^2d\delta(P)}{dc^2} \cdot \beta + \frac{n^3d + n^2mc}{c^3d} \cdot \gamma \right)$$

(4)
Cost analysis continued

Table: Costs of CholeskyQR2_Tunable.

<table>
<thead>
<tr>
<th>Line Number</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$O \left(c^2 \log P \cdot \alpha + \frac{c m n \delta(c) + n^2 d \delta(P)}{d c^2} \cdot \beta + \frac{n^3 d + n^2 m c}{c^3 d} \cdot \gamma \right) $</td>
</tr>
<tr>
<td>2</td>
<td>$O \left(c^2 \log P \cdot \alpha + \frac{c m n \delta(c) + n^2 d \delta(P)}{d c^2} \cdot \beta + \frac{n^3 d + n^2 m c}{c^3 d} \cdot \gamma \right) $</td>
</tr>
<tr>
<td>3</td>
<td>$2 \log_2 c^3 \cdot \alpha + \frac{3 n^2 + 6 n c \delta(c)}{2 c^2} \cdot \beta + O \left(\frac{n^3}{c^3} \right) \cdot \gamma$</td>
</tr>
</tbody>
</table>

$$T^{\alpha-\beta}_{\text{CholeskyQR2_Tunable}}(m, n, c, d) = O \left(c^2 \log P \cdot \alpha
ight.$$
$$+ \frac{c m n \delta(c) + n^2 d \delta(P)}{d c^2} \cdot \beta + \frac{n^3 d + n^2 m c}{c^3 d} \cdot \gamma \right)$$ (5)
Further analysis of CholeskyQR_Tunable

We can show that costs attained by CholeskyQR2_Tunable correctly interpolates between the costs of CholeskyQR2_1D and CholeskyQR2_3D. Note that our $c \times d \times c$ grid requires $P = c^2d$ and $d \geq c$.

\[
T_{\text{CholeskyQR2_Tunable}}^{\alpha - \beta} (m, n, 1, P) = O \left(1^2 \log P \cdot \alpha + \frac{mn\delta (1) + n^2P\delta (P)}{P \cdot 1^2} \cdot \beta + \frac{n^3P + n^2m}{1^3 \cdot P} \cdot \gamma \right)
\]
\[
= O \left(\log P \cdot \alpha + n^2\delta (P) \cdot \beta + \left(n^3 + \frac{n^2m}{P} \right) \cdot \gamma \right)
\]

(6)

\[
T_{\text{CholeskyQR2_Tunable}}^{\alpha - \beta} \left(m, n, P^{\frac{1}{3}}, P^{\frac{1}{3}} \right) = O \left(P^{\frac{2}{3}} \log P \cdot \alpha + \frac{mnP^{\frac{1}{3}} \delta \left(P^{\frac{1}{3}} \right) + n^2P^{\frac{1}{3}} \delta \left(P \right)}{P} \cdot \beta + \frac{n^3P^{\frac{1}{3}} + n^2mP^{\frac{1}{3}}}{P^{\frac{4}{3}}} \cdot \gamma \right)
\]
\[
= O \left(P^{\frac{2}{3}} \log P \cdot \alpha + \frac{\left(n^2 + nm \right) \delta \left(P \right)}{P^{\frac{2}{3}}} \cdot \beta + \frac{n^3 + n^2m}{P} \cdot \gamma \right)
\]

(7)
Costs attained by CholeskyQR2 algorithm variants

<table>
<thead>
<tr>
<th>Grid shape</th>
<th>Metric</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>$1 \times P \times 1$</td>
<td># of messages</td>
<td>$\mathcal{O}(\log P)$</td>
</tr>
<tr>
<td></td>
<td># of words</td>
<td>$\mathcal{O}(n^2 \delta(P))$</td>
</tr>
<tr>
<td></td>
<td># of flops</td>
<td>$\mathcal{O}\left(\frac{n^2 m}{P} + n^3\right)$</td>
</tr>
<tr>
<td></td>
<td>Memory footprint</td>
<td>$\mathcal{O}\left(\frac{mn}{P} + n^2\right)$</td>
</tr>
<tr>
<td>$P^{\frac{1}{3}} \times P^{\frac{1}{3}} \times P^{\frac{1}{3}}$</td>
<td># of messages</td>
<td>$\mathcal{O}\left(P^{\frac{2}{3}} \log P\right)$</td>
</tr>
<tr>
<td></td>
<td># of words</td>
<td>$\mathcal{O}\left(\frac{n^2 + nm}{P^{\frac{2}{3}}} \delta(P)\right)$</td>
</tr>
<tr>
<td></td>
<td># of flops</td>
<td>$\mathcal{O}\left(\frac{n^2 m + n^3}{P}\right)$</td>
</tr>
<tr>
<td></td>
<td>Memory footprint</td>
<td>$\mathcal{O}\left(\frac{mn + n^2}{P^{\frac{2}{3}}}\right)$</td>
</tr>
<tr>
<td>$c \times d \times c$</td>
<td># of messages</td>
<td>$\mathcal{O}\left(c^2 \log P\right)$</td>
</tr>
<tr>
<td></td>
<td># of words</td>
<td>$\mathcal{O}\left(\frac{cmn \delta(c) + n^2 d \delta(P)}{dc^2}\right)$</td>
</tr>
<tr>
<td></td>
<td># of flops</td>
<td>$\mathcal{O}\left(\frac{n^3 d + n^2 mc}{c^3 d}\right)$</td>
</tr>
<tr>
<td></td>
<td>Memory footprint</td>
<td>$\mathcal{O}\left(\frac{mnc + n^2 d}{c^2 d}\right)$</td>
</tr>
</tbody>
</table>
The advantage of using a tunable grid lies in the ability to frame the shape of the grid around the shape of rectangular $m \times n$ matrix A. Optimal communication can be attained by ensuring that the grid perfectly fits the dimensions of A, or that the dimensions of the grid are proportional to the dimensions of the matrix. We derive the cost for the optimal ratio $\frac{m}{d} = \frac{n}{c}$ below.

Using equation $P = c^2 d$ and $\frac{m}{d} = \frac{n}{c}$, solve for d, c in terms of m, n, P. Solving the system of equations yields

$$c = \left(\frac{Pn}{m} \right)^{\frac{1}{3}}, \quad d = \left(\frac{Pm^2}{n^2} \right)^{\frac{1}{3}}.$$ We can plug these values into the cost of CholeskyQR2_Tunable to find the optimal cost.

$$T_{\text{CholeskyQR2-Tunable}}^{\alpha - \beta} \left(m, n, \left(\frac{Pn}{m} \right)^{\frac{1}{3}}, \left(\frac{Pm^2}{n^2} \right)^{\frac{1}{3}} \right) = \mathcal{O} \left(\left(\frac{Pn}{m} \right)^{\frac{2}{3}} \log P \cdot \alpha \right)$$

$$+ \quad \frac{\left(\frac{Pn}{m} \right)^{\frac{1}{3}} mn + n^2 \left(\frac{Pm^2}{n^2} \right)^{\frac{1}{3}}}{ \left(\frac{Pm^2}{n^2} \right)^{\frac{1}{3}} \left(\frac{Pn}{m} \right)^{\frac{2}{3}}} \cdot \beta + \frac{n^3 \left(\frac{Pm^2}{n^2} \right)^{\frac{1}{3}} + n^2 m \left(\frac{Pn}{m} \right)^{\frac{1}{3}}}{ \left(\frac{Pn}{m} \right) \left(\frac{Pm^2}{n^2} \right)^{\frac{1}{3}}} \cdot \gamma$$

$$= \mathcal{O} \left(\left(\frac{Pn}{m} \right)^{\frac{2}{3}} \log P \cdot \alpha + \left(\frac{n^2 m}{P} \right)^{\frac{2}{3}} \cdot \beta + \frac{n^2 m}{P} \cdot \gamma \right)$$

<table>
<thead>
<tr>
<th>Grid shape</th>
<th>Metric</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>optimal</td>
<td># of messages</td>
<td>$\mathcal{O} \left(\left(\frac{Pn}{m} \right)^{\frac{2}{3}} \log P \right)$</td>
</tr>
<tr>
<td></td>
<td># of words</td>
<td>$\mathcal{O} \left(\left(\frac{n^2 m}{P} \right)^{\frac{2}{3}} \delta (P) \right)$</td>
</tr>
<tr>
<td></td>
<td># of flops</td>
<td>$\mathcal{O} \left(\frac{n^2 m}{P} \right)$</td>
</tr>
<tr>
<td></td>
<td>Memory footprint</td>
<td>$\mathcal{O} \left(\left(\frac{n^2 m}{P} \right)^{\frac{2}{3}} \right)$</td>
</tr>
</tbody>
</table>
Implementation and results

- All code written from scratch in C++11 and MPI
- Sitting in github right now, and waiting for final tune up before running on Blue Waters
- Optimistic, but ready to apply optimization strategies (Charmworks has taught me a lot in this regard through work on the CASI Solver project)
- Results will probably be ready sometime in August