communication-avoiding Cholesky-QR2 for rectangular matrices (CA-CQR2)

Edward Hutter and Edgar Solomonik

Laboratory for Parallel Numerical Algorithms
Department of Computer Science
University of Illinois at Urbana-Champaign

IPDPS 2019
Motivation for reducing algorithmic communication costs

Communication and synchronization increasingly dominating algorithm performance on modern architectures

\(\alpha - \beta - \gamma \) cost model

- **\(\alpha \)** - cost to send zero-byte message
- **\(\beta \)** - cost to inject byte of data into network
- **\(\gamma \)** - cost to perform flop with register-resident data

Architectural trend: \(\alpha \gg \beta \gg \gamma \)

Figure: Horizontal (internode network) communication along critical path

Communication-avoiding algorithms for **most** dense matrix factorizations present in numerical libraries

Goal: A QR factorization algorithm that prioritizes minimizing synchronization and communication cost
3D algorithms utilize available extra memory to reduce communication asymptotically.

We introduce CA-CQR2, a novel practical 3D QR factorization algorithm
- extends CholeskyQR2 algorithm to arbitrary matrices
- requires $O\left(\left(\frac{Pm^2}{n^2}\right)^{\frac{1}{6}}\right)$ less communication than known 2D QR algorithms for $m \times n$ matrices across P processes
- obtains 3x speedups over ScaLAPACK on 1024 nodes
- utilizes first distributed-memory implementation of recursive 3D Cholesky factorization

CA-CQR2’s asymptotic communication reduction incurs tradeoffs
- increased computation ($2 - 4x$ more flops than Householder QR)
- constrained applicability (matrix must be sufficiently well-conditioned)
- requires $O\left(\left(\frac{Pm}{n}\right)^{\frac{1}{3}}\right)$ more memory than known 2D QR algorithms for $m \times n$ matrices across P processes
QR Strong scaling performance on Stampede2

Strong Scaling on Stampede2, 8388608 x 2048 matrix

Figure: Strong scaling for $m \times n$ matrices
Weak Scaling on Stampede2, Up to 8388608 x 8192 matrix

Figure: Weak scaling for $m \times n$ matrices so mn^2 scales linearly with node count
α − β model captures communication (β) and synchronization (α) costs over P processors.

ScalAPACK’s PGEQRF is communication-optimal assuming minimal memory (2D):

\[T_{PGEQRF}^{α, β} = \mathcal{O} \left(n \log P \cdot \alpha + \frac{mn}{\sqrt{P}} \cdot \beta \right) \]

\[M_{PGEQRF} = \mathcal{O} \left(\frac{mn}{P} \right) \]

CAQR factors panels using TSQR to reduce synchronization\(^1\) (2D):

\[T_{CAQR}^{α, β} = \mathcal{O} \left(\sqrt{P} \log^2 P \cdot \alpha + \frac{mn}{\sqrt{P}} \cdot \beta \right) \]

\[M_{CAQR} = \mathcal{O} \left(\frac{mn}{P} \right) \]

CA-CQR2 leverages extra memory to reduce communication (3D):

\[T_{CA-CQR2}^{α, β} = \mathcal{O} \left(\left(\frac{Pn}{m} \right)^{\frac{2}{3}} \log P \cdot \alpha + \left(\frac{n^2 m}{P} \right)^{\frac{2}{3}} \cdot \beta \right) \]

\[M_{CA-CQR2} = \mathcal{O} \left(\left(\frac{n^2 m}{P} \right)^{\frac{2}{3}} \right) \]

3D algorithms exist in theory\(^2\)\(^3\)\(^4\), but **CA-CQR2 is the first practical approach**

1. J. Demmel et al., "Communication-optimal Parallel and Sequential QR and LU Factorizations", SISC 2012
3. E. Solomonik et al., "A communication-avoiding parallel algorithm for the symmetric eigenvalue problem", SPAA 2017
4. G. Ballard et al., "A 3D Parallel Algorithm for QR Decomposition", SPAA 2018
Instability of Cholesky-QR

QR factorization algorithms used in practice stem from processes of orthogonal triangularization for their superior numerical stability

\[Q_n Q_{n-1} \ldots Q_1 A = R \]

The Cholesky-QR algorithm is a simple algorithm that follows a numerically unstable process of triangular orthogonalization

\[AR_1^{-1} R_2^{-1} \ldots R_n^{-1} = Q \]

\[[Q, R] \leftarrow \textbf{Cholesky-QR} (A) \]

- \(B \leftarrow A^T A \) \quad \text{\(B \) may be indefinite!}
- \(R^T R \leftarrow B \) \quad \text{Possible failure in Cholesky factorization!}
- \(Q \leftarrow AR^{-1} \) \quad \text{\(R \) may have lost all accuracy! \(Q \) may lost orthogonality!}
The Cholesky-QR2 algorithm can achieve stability through iterative refinement:\(^1\)

\[
[Q, R] \leftarrow \text{Cholesky-QR2} (A)
\]

\[
\begin{align*}
Z, R_1 & \leftarrow \text{CQR}(A) \\
Q, R_2 & \leftarrow \text{CQR}(Z) \\
R & \leftarrow R_2 R_1
\end{align*}
\]

- leverages near-perfect conditioning of \(Z\) in a second iteration:\(^1\)
- \(A = ZR_1 = QR_2 R_1\), from \(A^T A = R_1^T Z^T Z R_1 = R_1^T R_2^T Q^T Q R_2 R_1\), where \(R_2\) corrects initial \(R_1\)
- numerical breakdown still possible if first iteration loses positive definiteness in \(A^T A\) via \(\kappa(A) \leq 1/\sqrt{\varepsilon}\)

Shifted Cholesky-QR\(^2\) can attain a stable factorization for any matrix \(\kappa(A) \leq 1/\varepsilon\)

- the eigenvalues of \(A^T A\) are shifted to prevent loss of positive definiteness
- three Cholesky-QR iterations required, essentially 3 – 6x more flops than Householder approaches

\(^2\) T. Fukaya et al., "Shifted CholeskyQR for computing the QR factorization of ill-conditioned matrices", Arxiv 2018
Scalability of Cholesky-QR2

Cholesky-QR2 (CQR2) can achieve superior performance on tall-and-skinny matrices\(^1\):

- Householder QR - \(2mn^2 - \frac{2n^3}{3}\) flops, Cholesky-QR2 - \(4mn^2 + \frac{5n^3}{3}\) flops

\[
T_{\text{Cholesky-QR2}}(m, n, P) = \mathcal{O}\left(\log P \cdot \alpha + n^2 \cdot \beta + \left(\frac{n^2 m}{P} + n^3\right) \cdot \gamma\right)
\]

CA-CQR2 parallelizes Cholesky-QR2 over a 3D processor grid, efficiently factoring any rectangular matrix

\(^1\)T. Fukaya et al., “CholeskyQR2: A communication-avoiding algorithm”, ScalA 2014
CA-CQR2’s communication-optimal parallelization

CA-CQR2 leverages known 3D algorithms for matrix multiplication\(^1\) and Cholesky factorization\(^2\)

A recursion tree for recursive Cholesky factorization and triangular inverse yields a tradeoff in communication and synchronization\(^2\)

A tunable 3D processor grid of dimensions \(c \times d \times c\) determines the replication factor \((c)\), the communication reduction \((\sqrt{c})\), and the number of simultaneous instances of 3D algorithms \((d/c)\)

Figure: Start with a tunable $c \times d \times c$ processor grid
Cost: $2 \log_2 c \cdot \alpha + \frac{2mn}{dc} \cdot \beta$
CA-CQR2 – Computation of Gram matrix

Figure: Reduce contiguous groups of size \(c \)

Cost:
\[
2 \log_2 c \cdot \alpha + \frac{2n^2}{c^2} \cdot \beta + \frac{n^2}{c^2} \cdot \gamma
\]
Cost: $2 \log_2 \frac{d}{c} \cdot \alpha + \frac{2n^2}{c^2} \cdot \beta + \frac{n^2}{c^2} \cdot \gamma$
Figure: Broadcast missing pieces of B along depth

Cost: $2 \log_2 c \cdot \alpha + \frac{2n^2}{c^2} \cdot \beta$
CA-CQR2 – Computation of CholeskyInverse

Figure: $\frac{d}{c}$ simultaneous 3D CholeskyInverse on cubes of dimension c

Cost: $O\left(c^2 \log c^3 \cdot \alpha + \frac{n^2}{c^2} \cdot \beta + \frac{n^3}{c^3} \cdot \gamma \right)$
Figure: \(\frac{d}{c} \) simultaneous 3D matrix multiplication or TRSM on cubes of dimension \(c \)

\[
Q = AR^{-1}
\]

Cost: \(\mathcal{O}(\log_2 c^3 \cdot \alpha + \left(\frac{mn}{dc} + \frac{n^2+nc}{c^2} \right) \cdot \beta + \frac{n^2m}{c^2d} \cdot \gamma) \)
Algorithmic cost analysis for CA-CQR2 and its competition

CA-CQR2’s cost expression expresses tunable tradeoffs

\[T_{CA-CQR2}^{\alpha-\beta} (m, n, c, d) = \mathcal{O}\left(c^2 \log(d/c) \cdot \alpha + \left(\frac{mn}{dc} + \frac{n^2}{c^2} \right) \cdot \beta + \left(\frac{mn^2}{c^2d} + \frac{n^3}{c^3} \right) \cdot \gamma \right) \]

Requiring each processor to own a square submatrix \(\left(\frac{m}{d} = \frac{n}{c} \right) \) and enforcing \(P = c^2d \), CA-CQR2 finds an optimal processor grid that supports minimal communication

<table>
<thead>
<tr>
<th>1D Cholesky-QR2</th>
<th>2D ScaLAPACK</th>
<th>2D CAQR</th>
<th>3D CA-CQR2</th>
</tr>
</thead>
<tbody>
<tr>
<td>messages</td>
<td>(\mathcal{O}(\log P))</td>
<td>(\mathcal{O}(n \log P))</td>
<td>(\mathcal{O}\left(\sqrt{P} \log^2 P \right))</td>
</tr>
<tr>
<td>words</td>
<td>(\mathcal{O}(n^2))</td>
<td>(\mathcal{O}\left(\frac{mn}{\sqrt{P}} \right))</td>
<td>(\mathcal{O}\left(\frac{mn}{\sqrt{P}} \right))</td>
</tr>
<tr>
<td>flops</td>
<td>(\mathcal{O}\left(\frac{n^2m}{P} + n^3 \right))</td>
<td>(\mathcal{O}\left(\frac{mn^2}{P} \right))</td>
<td>(\mathcal{O}\left(\frac{mn^2}{P} \right))</td>
</tr>
<tr>
<td>memory</td>
<td>(\mathcal{O}\left(\frac{mn}{P} + n^2 \right))</td>
<td>(\mathcal{O}\left(\frac{mn}{P} \right))</td>
<td>(\mathcal{O}\left(\frac{mn}{P} \right))</td>
</tr>
</tbody>
</table>

Minimal communication cost in a QR factorization is reflected by the surface area of the cubic volume of \(\mathcal{O}(mn^2/P) \) computation
We factor $m \times n$ matrices with $m \gg n$ to highlight the effect CA-CQR2’s communication reduction and algorithmic tradeoffs have on performance.

Scaling studies highlight the interplay between CA-CQR2’s increased arithmetic intensity and an architecture’s machine balance:

- ratio of peak-flops to network bandwidth is 8x higher on Stampede2\(^1\) than BlueWaters\(^2\)

We show only the most-performant variants at each node count of CA-CQR2 and ScaLAPACK’s PGEQRF:

- ScaLAPACK tuned over 2D processor grid dimensions and block sizes
- CA-CQR2 tuned over processor grid dimensions d and c
- each tested/tuned over a number of resource configurations
- both algorithms use Householder’s flop cost in determining performance

\(^1\)Intel Knights Landing (KNL) cluster at TACC
\(^2\)Cray XE/XK hybrid machine at NCSA
Figure: Weak scaling for \(m \times n \) matrices so \(mn^2 \) scales linearly with node count
QR Strong scaling on Stampede2 and Blue Waters

Figure: Strong scaling for $m \times n$ matrices
CA-CQR2’s performance improvements over ScaLAPACK on Stampede2 range from 1.1 - 3.3x at 1024 nodes

CA-CQR2 leverages current and future architectural trends

- machines with highest ratio of peak node performance to peak injection bandwidth will benefit most
- asymptotic communication reductuction increasingly evident as we scale, despite overheads in synchronization and computation

These results motivate increasingly wide overdetermined systems, a **critical use case for solving linear least squares and eigenvalue problems**

Our study shows that **communication-optimal parallel QR factorizations can achieve superior performance and scaling up to thousands of nodes**\(^1\) \(^2\)

\(^1\) Our preprint detailing CA-CQR2 can be found at https://arxiv.org/abs/1710.08471

\(^2\) Our C++ implementation can be found at https://github.com/huttered40/CA-CQR2
I’d like to acknowledge the Department of Energy and Krell Institute for supporting this research via awarding me a DOE Computational Science Graduate Fellowship\(^1\)

We’d also like to acknowledge a number of computing centers for providing benchmarking resources

- Texas Advanced Computing Center (TACC) via Stampede2\(^2\)
- National Center for Supercomputing Applications (NCSA) via Blue Waters\(^3\)
- Argonne Leadership Computing Facility (Cetus, Mira, Theta) for preliminary benchmarking

1 Grant number DE-SC0019323
2 Allocation TG-CCR180006
3 Awards OCI-0725070 and ACI-1238993
CA-CQR2 building block #1 – 3D Matrix Multiplication

Figure: 3D algorithm for square matrix multiplication \(^1\) \(^2\) \(^3\)

\[C = AB \]

Broadcast across rows \hspace{1cm} \text{Broadcast along columns} \hspace{1cm} \text{AllReduce along depth}

\[T_{3D-MM}(n, P) = \mathcal{O} \left(\log P \cdot \alpha + \frac{n^2}{P^{\frac{2}{3}}} \cdot \beta + \frac{n^3}{P} \cdot \gamma \right) \]

\(^1\)Bersten 1989, "Communication-efficient matrix multiplication on hypercubes"

\(^2\)Aggarwal, Chandra, Snir 1990, "Communication complexity of PRAMs"

\(^3\)Agarwal et al. 1995, "A three-dimensional approach to parallel matrix multiplication"
We can embed the recursive definitions of Cholesky factorization and triangular inverse to find matrices R, R^{-1}

Tuning the recursion tree yields a tradeoff in horizontal bandwidth and synchronization\(^1\)

\[
\begin{bmatrix}
 L_{11} & L_{11}^{-1} \\
 L_{21} & L_{21}^{-1}
\end{bmatrix} \leftarrow \text{CholeskyInverse}(A)
\]

\[
\begin{align*}
L_{21} & \leftarrow A_{21} L_{11}^{-T} \\
\begin{bmatrix}
 L_{11} & L_{11}^{-1} \\
 L_{22} & L_{22}^{-1}
\end{bmatrix} & \leftarrow \text{CholeskyInverse}(A_{22} - L_{21}^T L_{21}) \\
L_{21}^{-1} & \leftarrow -L_{22}^{-1} L_{21} L_{11}^{-1}
\end{align*}
\]

\[
T_{\text{CholeskyInverse3D}}(n, P) = O\left(P^{\frac{2}{3}} \log P \cdot \alpha + \frac{n^2}{P^{\frac{2}{3}}} \cdot \beta + \frac{n^3}{P} \cdot \gamma \right)
\]

\[
T_{\text{ScalAPACK}}(n, P) = O\left(\sqrt{P} \log P \cdot \alpha + \frac{n^2}{\sqrt{P}} \cdot \beta + \frac{n^3}{P} \cdot \gamma \right)
\]

\(^1\)A. Tiskin 2007, "Communication-efficient generic pairwise elimination"
Figure: Start with a tunable $c \times d \times c$ processor grid
Figure: Compute Gram matrix $A^T A$
Figure: Compute 3D CholeskyInverse on processor grid cubes of dimension c
Figure: Compute 3D matrix multiplication or 3D TRSM on processor grid cubes of dimension c.

$$Q = AR^{-1}$$
The advantage of using a tunable grid lies in the ability to frame the shape of the grid around the shape of rectangular $m \times n$ matrix A. Optimal communication can be attained by ensuring that the grid perfectly fits the dimensions of A, or that the dimensions of the grid are proportional to the dimensions of the matrix. We derive the cost for the optimal ratio $\frac{m}{d} = \frac{n}{c}$ below. Using equation $P = c^2 d$ and

$$\frac{m}{d} = \frac{n}{c},$$

solve for d, c in terms of m, n, P. Solving the system of equations yields $c = \left(\frac{Pn}{m} \right)^{\frac{1}{3}}, d = \left(\frac{Pm^2}{n^2} \right)^{\frac{1}{3}}$. We can plug these values into the cost of Cholesky-QR2_Tunable to find the optimal cost.

The cost of Cholesky-QR2_Tunable is

$$T^{\alpha - \beta}_{\text{Cholesky-QR2-Tunable}} \left(m, n, \left(\frac{Pn}{m} \right)^{\frac{1}{3}}, \left(\frac{Pm^2}{n^2} \right)^{\frac{1}{3}} \right) = O \left(\left(\frac{Pn}{m} \right)^{\frac{2}{3}} \log P \cdot \alpha \right)$$

$$+ \frac{\left(\frac{Pn}{m} \right)^{\frac{1}{3}} mn + n^2 \left(\frac{Pm^2}{n^2} \right)^{\frac{1}{3}}}{\left(\frac{Pm^2}{n^2} \right)^{\frac{1}{3}} \left(\frac{Pn}{m} \right)^{\frac{2}{3}}} \beta + \frac{n^3 \left(\frac{Pm^2}{n^2} \right)^{\frac{1}{3}} + n^2 m \left(\frac{Pn}{m} \right)^{\frac{1}{3}}}{\left(\frac{Pn}{m} \right) \left(\frac{Pm^2}{n^2} \right)^{\frac{1}{3}}} \gamma$$

$$= O \left(\left(\frac{Pn}{m} \right)^{\frac{2}{3}} \log P \cdot \alpha + \left(\frac{n^2 m}{P} \right)^{\frac{2}{3}} \cdot \beta + \frac{n^2 m}{P} \cdot \gamma \right)$$

<table>
<thead>
<tr>
<th>Grid shape</th>
<th>Metric</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>optimal</td>
<td># of messages</td>
<td>$O \left(\left(\frac{Pn}{m} \right)^{\frac{2}{3}} \log P \right)$</td>
</tr>
<tr>
<td></td>
<td># of words</td>
<td>$O \left(\left(\frac{n^2 m}{P} \right)^{\frac{2}{3}} \right)$</td>
</tr>
<tr>
<td></td>
<td># of flops</td>
<td>$O \left(\left(\frac{n^2 m}{P} \right) \right)$</td>
</tr>
<tr>
<td></td>
<td>Memory footprint</td>
<td>$O \left(\left(\frac{n^2 m}{P} \right)^{\frac{2}{3}} \right)$</td>
</tr>
</tbody>
</table>
QR Weak Scaling on BlueWaters, $65536a \times 2048b$ matrix

(a,b), Nodes=$16a^2b^2$

Figure: Weak scaling for $m \times n$ matrices so mn^2 scales linearly with node count
QR Weak Scaling on BlueWaters, 262144*a x 1024*b matrix

Figure: Weak scaling for $m \times n$ matrices so mn^2 scales linearly with node count
Figure: Weak scaling for $m \times n$ matrices so mn^2 scales linearly with node count.
QR Weak Scaling on Stampede2, 262144*a x 8192*b matrix

Figure: Weak scaling for $m \times n$ matrices so mn^2 scales linearly with node count
Weak scaling on Stampede2 and Blue Waters

Figure: Weak scaling for $m \times n$ matrices so mn^2 scales linearly with node count
QR Weak Scaling on Stampede2, 1048576*a x 2048*b matrix

Figure: Weak scaling for $m \times n$ matrices so mn^2 scales linearly with node count
Weak scaling on Stampede2 and Blue Waters

QR Weak Scaling on Stampede2, $2097152 \times a \times 1024 \times b$ matrix

Figure: Weak scaling for $m \times n$ matrices so $m n^2$ scales linearly with node count
Figure: Strong scaling for QR factorization
Figure: Strong scaling for QR factorization
QR Strong Scaling on Stampede2, 524288 x 8192 matrix

Figure: Strong scaling for QR factorization
Strong scaling on Stampede2 and Blue Waters

QR Strong Scaling on Stampede2, 2048576 x 4096 matrix

Figure: Strong scaling for QR factorization

Edward Hutter and Edgar Solomonik
Strong scaling on Stampede2 and Blue Waters

Figure: Strong scaling for QR factorization
QR Strong Scaling on Stampede2, 33554432 x 1024 matrix

Figure: Strong scaling for QR factorization
Weak scaling performance on Blue Waters with 16 MPI processes/node

Figure: Weak scaling for matrices with dimensions given in legend
Weak scaling performance on Blue Waters with 16 MPI processes/node

Figure: Weak scaling for matrices with dimensions given in legend
Weak scaling performance on Blue Waters with 16 MPI processes/node

Figure: Weak scaling for matrices with dimensions given in legend
Weak scaling performance on Stampede2 with 64 MPI processes/node

Figure: Weak scaling for matrices with dimensions given in legend
Weak scaling performance on Stampede2 with 64 MPI processes/node

Weak Scaling, $524288 \times a \times 2048 \times b$

Gigaflops/s/Node

$\begin{pmatrix} 2,1 & 1,2 & 2,2 & 4,2 & 8,2 & 4,4 & 8,4 \end{pmatrix}$

$\begin{pmatrix} a, b \end{pmatrix}$, Nodes = $8 \times a \times b \times b$

ScaLAPACK-$(512ab,32,64,1)$

ScaLAPACK-$(512ab,64,64,1)$

CA-CQR2-$(64a/b,1,64,1)$

CA-CQR2-$(128a/b,0,16,4)$

Figure: Weak scaling for matrices with dimensions given in legend
Weak scaling performance on Stampede2 with 64 MPI processes/node

Figure: Weak scaling for matrices with dimensions given in legend
Figure: Weak scaling for matrices with dimensions given in legend
Strong scaling performance on Blue Waters with 16 MPI processes/node

Figure: Strong scaling for matrices with dimensions given in legend
Strong scaling performance on Blue Waters with 16 MPI processes/node

Figure: Strong scaling for matrices with dimensions given in legend
Strong scaling performance on Stampede2 with 64 MPI processes/node

Figure: Strong scaling for matrices with dimensions given in legend
Strong scaling performance on Stampede2 with 64 MPI processes/node

Figure: Strong scaling for matrices with dimensions given in legend
Figure: Strong scaling for matrices with dimensions given in legend
Strong scaling performance on Stampede2 with 64 MPI processes/node

Figure: Strong scaling for matrices with dimensions given in legend