Least Squares Updating for Kronecker Products

Raul Platero
Mathematics and Computer Science
Emory University
Atlanta, GA, USA

James Nagy, Emory University

Outline

- Introduction
- 2 Tools
- 3 Preconditioner
- 4 Numerical Experiments
- Conclusion

Image Deblurring

Image deblurring-

Given blurred image:

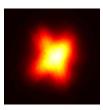
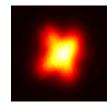


Image Deblurring

Image deblurring-

Given blurred image:



Compute estimate of true image:

Mathematical Model

General mathematical model for image formation:

$$\mathbf{b} = A\mathbf{x} + \boldsymbol{\eta}$$

where

- **b** = vector representing observed image
- x = vector representing true image
- A = matrix defining blurring operation
- $\eta = \text{unknown additive noise}$

Approximation of Blurring Matrix

The blurring matrix is defined by:

$$K = A_1 \otimes B_1 + A_2 \otimes B_2 + \dots + A_n \otimes B_n \tag{1}$$

Approximation of Blurring Matrix

The blurring matrix is defined by:

$$K = A_1 \otimes B_1 + A_2 \otimes B_2 + \dots + A_n \otimes B_n \tag{1}$$

Which can be approximated using only the first two terms

$$K \approx A_1 \otimes A_2 + B_1 \otimes B_2. \tag{2}$$

Approximation of Blurring Matrix

The blurring matrix is defined by:

$$K = A_1 \otimes B_1 + A_2 \otimes B_2 + \cdots + A_n \otimes B_n \tag{1}$$

Which can be approximated using only the first two terms

$$K \approx A_1 \otimes A_2 + B_1 \otimes B_2. \tag{2}$$

Second term can be approximated by a rank-one matrix¹

$$K \approx A = A_1 \otimes A_2 + \mathbf{wz}^T, \tag{3}$$

where $\mathbf{w} = \mathbf{w}_1 \otimes \mathbf{w}_2$ and $\mathbf{z} = \mathbf{z}_1 \otimes \mathbf{z}_2$ and are column vectors.

¹M. Rezghi, S.M. Hosseini, and L. Elden, Best Kronecker product approximation of the blurring operator in three dimensional image restoration problems ,SIAM J. Matrix Anal. Appl. Vol. 35, No. 3, pp. 10861104

Tikhonov Regularization

Least squares problem

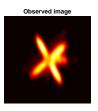
$$\min_{\mathbf{x}} \|A\mathbf{x} - \mathbf{b}\|_2^2$$

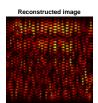
Damped least squares problem

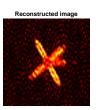
$$\min_{\mathbf{x}} \left\{ ||A\mathbf{x} - \mathbf{b}||_2^2 + \lambda^2 ||\mathbf{x}||_2^2 \right\}. \tag{4}$$

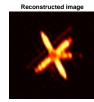
The regularization parameter λ controls the smoothness of the solution.

Figure: Observed image, along with three reconstructed images where $\lambda=0,\ \lambda=\lambda/1000,\ {\rm and}\ \lambda=\lambda*0.6$ respectively









Tikhonov Regularization

Damped least squares problem (equation (4)) is reformulated

$$\min_{\mathbf{x}} \left\| \begin{bmatrix} A \\ \lambda I \end{bmatrix} \mathbf{x} - \begin{bmatrix} \mathbf{b} \\ \mathbf{0} \end{bmatrix} \right\|_{2}^{2}. \tag{5}$$

Now, if we combine this equation with the approximation of the blurring matrix

$$\min_{\mathbf{x}} \left\| \begin{bmatrix} A_1 \otimes A_2 + \mathbf{w} \mathbf{z}^T \\ \lambda I \end{bmatrix} \mathbf{x} - \begin{bmatrix} \mathbf{b} \\ \mathbf{0} \end{bmatrix} \right\|_2^2.$$
 (6)

LSQR

$$\min_{\mathbf{x}} \left\| \left[\begin{array}{c} A_1 \otimes A_2 + \mathbf{wz}^T \\ \lambda I \end{array} \right] \mathbf{x} - \left[\begin{array}{c} \mathbf{b} \\ \mathbf{0} \end{array} \right] \right\|_2^2$$

Use LSQR to compute solution

QR Factorization

QR factorization (or decomposition): If $A \in \mathbb{R}^{m \times n}$, then there exists matrices Q and R such that

$$A = QR$$

where $Q \in \mathbb{R}^{m \times m}$, $Q^T Q = I$ (i.e Q is an orthogonal matrix) and $R \in \mathbb{R}^{m \times n}$.

Givens Rotations

Givens rotations (or plane rotations):

A Givens rotation is a matrix that represents a clockwise rotation by an angle θ .

$$G = \begin{bmatrix} c & s \\ -s & c \end{bmatrix} = \begin{bmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{bmatrix}$$

In general:

Givens rotations example:

$$A = \begin{bmatrix} x & x & x \\ x & x & x \\ x & x & x \end{bmatrix}$$

Note

 zero entry rotated into a zero entry will remain zero non-zero entry rotated to a zero entry will change the zero entry into a non-zero entry

Givens rotations example:

$$A = \begin{bmatrix} x & x & x \\ x & x & x \\ x & x & x \end{bmatrix}$$

Givens rotations example:

$$A = \begin{bmatrix} x & x & x \\ x & x & x \\ x & x & x \end{bmatrix}$$

$$G_{23}(\theta_1)^T A = \left[\begin{array}{ccc} x & x & x \\ \bar{x} & \bar{x} & \bar{x} \\ 0 & \bar{x} & \bar{x} \end{array} \right]$$

$$G_{12}(\theta_2)^T G_{23}(\theta_1)^T A = \begin{bmatrix} \bar{x} & \bar{x} & \bar{x} \\ 0 & \bar{x} & \bar{x} \\ 0 & \bar{x} & \bar{x} \end{bmatrix}$$

$$G_{12}(\theta_2)^T G_{23}(\theta_1)^T A = \begin{bmatrix} \overline{x} & \overline{x} & \overline{x} \\ 0 & \overline{x} & \overline{x} \\ 0 & \overline{x} & \overline{x} \end{bmatrix}$$

$$G_{23}(\theta_3)^T G_{12}(\theta_2)^T G_{23}(\theta_1)^T A = \begin{bmatrix} \bar{x} & \bar{x} & \bar{x} \\ 0 & \bar{x} & \bar{x} \\ 0 & 0 & \bar{x} \end{bmatrix}$$

$$G_{12}(\theta_2)^T G_{23}(\theta_1)^T A = \begin{bmatrix} \bar{x} & \bar{x} & \bar{x} \\ 0 & \bar{x} & \bar{x} \\ 0 & \bar{x} & \bar{x} \end{bmatrix}$$

$$G_{23}(\theta_3)^T G_{12}(\theta_2)^T G_{23}(\theta_1)^T A = \begin{bmatrix} \bar{x} & \bar{x} & \bar{x} \\ 0 & \bar{x} & \bar{x} \\ 0 & 0 & \bar{x} \end{bmatrix}$$

Because the product of orthogonal matrices is an orthogonal matrix, we let $Q = G_{23}(\theta_1)G_{12}(\theta_2)G_{23}(\theta_3)$, and we obtain

$$Q^T A = R \implies A = QR.$$

Updating Problem

Updating problem:

Given a solution to a mathematical problem, efficiently compute a new solution when the problem is slightly modified.

Updating Problem

Updating problem:

Given a solution to a mathematical problem, efficiently compute a new solution when the problem is slightly modified.

appending a row: Given QR factorization of A, compute QR factorization of

$$\tilde{A} = \begin{bmatrix} A \\ \mathbf{u}^T \end{bmatrix}$$

appending a column: Given QR factorization of A, compute QR factorization of

$$\tilde{A} = [A \mid \mathbf{u}^T].$$

 adding a rank-one matrix: Given QR factorization of A, compute QR factorization of

$$\tilde{A} = A + \mathbf{wz}^T$$

where \mathbf{w} , \mathbf{z} are column vectors

Kronecker Product

Kronecker product: generalized outer product that results in a block matrix.

$$K = A \otimes B = \begin{bmatrix} a_{11}B & a_{12}B & \dots & a_{1n}B \\ a_{21}B & a_{22}B & \dots & a_{2n}B \\ \vdots & \vdots & & \vdots \\ a_{m1}B & a_{m2}B & \dots & a_{mn}B \end{bmatrix}$$

If
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 4 & 5 \end{bmatrix}$$
 and $B = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, then

If
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 4 & 5 \end{bmatrix}$$
 and $B = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, then
$$A \otimes B = \begin{bmatrix} 1B & 2B & 3B \\ 3B & 4B & 5B \end{bmatrix} = \begin{bmatrix} 1 & 0 & 2 & 0 & 3 & 0 \\ 0 & 1 & 0 & 2 & 0 & 3 \\ 3 & 0 & 4 & 0 & 5 & 0 \\ 0 & 3 & 0 & 4 & 0 & 5 \end{bmatrix}$$

Properties

Property 1

$$(A \otimes B)^T = A^T \otimes B^T \tag{7}$$

Property 2

If A and B are invertible, then $A \otimes B$ is invertible and

$$(A \otimes B)^{-1} = A^{-1} \otimes B^{-1} \tag{8}$$

Property 3

If A and B are orthogonal, then $A \otimes B$ is also orthogonal. (9)

Property 4

$$(A \otimes B)(C \otimes D) = AC \otimes BD \tag{10}$$

Preconditioner

What is a preconditioner?

Preconditioner

What is a preconditioner? application of a transformation to make a problem more suitable for solving methods

Given QR factorization of A, compute QR factorization of

$$\tilde{A} = A + \mathbf{wz}^T$$

where \mathbf{w} , \mathbf{z} are column vectors

Given QR factorization of A, compute QR factorization of

$$\tilde{A} = A + \mathbf{wz}^T$$

where \mathbf{w} , \mathbf{z} are column vectors

$$\tilde{A} = A + \mathbf{w}\mathbf{z}^{T}$$

$$= QR + \mathbf{w}\mathbf{z}^{T}$$

$$= Q[R + Q^{T}\mathbf{w}\mathbf{z}^{T}]$$

$$= Q[R + \overline{Q}\overline{Q}^{T}Q^{T}\mathbf{w}\mathbf{z}^{T}]$$

$$= Q\overline{Q}[\overline{Q}^{T}R + c\mathbf{e}_{1}\mathbf{z}^{T}]$$

$$R = \begin{bmatrix} x & x & \dots & x & x \\ & x & \ddots & & \vdots \\ & & \ddots & & x \\ & & & & x \end{bmatrix}$$

$$R = \begin{bmatrix} x & x & \dots & x & x \\ & x & \ddots & & \vdots \\ & & \ddots & & x \\ & & & x \end{bmatrix}$$

$$R = H = \begin{bmatrix} x & x & \dots & x \\ x & x & \dots & x \\ & & & x \end{bmatrix}$$

$$\overline{Q}^T R = H = \begin{bmatrix} x & x & \dots & x & x \\ x & x & & & \vdots \\ & x & \ddots & x & x \\ & & \ddots & x & x \end{bmatrix}$$

$$= Q\overline{Q}[\overline{Q}^T R + c\mathbf{e}_1 \mathbf{z}^T]$$

$$= Q\overline{Q}[H]$$

$$= Q\overline{Q}\hat{Q}\tilde{R}$$

$$= \tilde{Q}\tilde{R},$$

where
$$ilde{Q}=Q\overline{Q}\hat{Q}$$

Rank-one Update for Kronecker Products

Rank-one update for Kronecker products:

Suppose we are given a matrix A_1 and A_2 and their corresponding QR factorizations,

$$A = A_1 \otimes A_2 + \mathbf{wz}^T = (Q_1 \otimes Q_2)(R_1 \otimes R_2) + (\mathbf{w}_1 \otimes \mathbf{w}_2)(\mathbf{z}_1 \otimes \mathbf{z}_2)^T.$$

This problem is restated as

$$A = (Q_1 \otimes Q_2)[(R_1 \otimes R_2) + (Q_1^T \mathbf{w}_1 \otimes Q_2^T \mathbf{w}_2)(\mathbf{z}_1 \otimes \mathbf{z}_2)^T] \quad (11)$$

Rank-one Update for Kronecker Products

$$A = (Q_1 \otimes Q_2)[(R_1 \otimes R_2) + (Q_1^T \mathbf{w}_1 \otimes Q_2^T \mathbf{w}_2)(\mathbf{z}_1 \otimes \mathbf{z}_2)^T]$$

Rank-one Update for Kronecker Products

$$A = (Q_1 \otimes Q_2)[(R_1 \otimes R_2) + (Q_1^T \mathbf{w}_1 \otimes Q_2^T \mathbf{w}_2)(\mathbf{z}_1 \otimes \mathbf{z}_2)^T]$$

$$A = (Q_1 \otimes Q_2)(\bar{Q}_1 \otimes \bar{Q}_2)[(\bar{Q}_1^T \otimes \bar{Q}_2^T)(R_1 \otimes R_2) + v(\mathbf{e}_1 \otimes \mathbf{e}_1)(\mathbf{z}_1 \otimes \mathbf{z}_2)^T],$$

where v is a scalar.

Rank-one Update for Kronecker Products

$$A = (Q_1 \otimes Q_2)[(R_1 \otimes R_2) + (Q_1^T \mathbf{w}_1 \otimes Q_2^T \mathbf{w}_2)(\mathbf{z}_1 \otimes \mathbf{z}_2)^T]$$

$$A = (Q_1 \otimes Q_2)(\bar{Q}_1 \otimes \bar{Q}_2)[(\bar{Q}_1^T \otimes \bar{Q}_2^T)(R_1 \otimes R_2) + v(\mathbf{e}_1 \otimes \mathbf{e}_1)(\mathbf{z}_1 \otimes \mathbf{z}_2)^T],$$

where v is a scalar.

$$A = (\tilde{Q}1 \otimes \tilde{Q}_2)[(H_1 \otimes H_2) + \nu(\mathbf{e}_1 \otimes \mathbf{e}_1)(\mathbf{z}_1 \otimes \mathbf{z}_2)^T]$$
(12)

Preconditioner

What makes a good preconditioner? Find *M* that has the following properties:

- M can be computed efficiently.
- Solving linear systems with M and M^T can be done efficiently.
- M has the property that $M^TM \approx A^TA + \lambda^2I$. Ideally, if $M^TM (A^TA + \lambda^2I)$ is a matrix of rank r, then LSQR will converge in at most r iterations².

²S. Karimi, D. K. Salkuyeh and F. Toutounian, *A preconditioner for LSQR algorithm*, 9J. Appl. Math. and Informatics Vol. 26(2008), No. 1 - 2, pp. 213 - 222

Rank-one Updating Scheme for Preconditioner

$$A = (\tilde{Q}1 \otimes \tilde{Q}_2)[(H_1 \otimes H_2) + \nu(\mathbf{e}_1 \otimes \mathbf{e}_1)(\mathbf{z}_1 \otimes \mathbf{z}_2)^T]$$
 (13)

Consider the singular value decomposition of H_1 and H_2 :

$$H_1 = U_1 \Sigma_1 V_1^T$$
 and $H_2 = U_2 \Sigma_2 V_2^T$.

We will use the following as our preconditioner:

$$M = D(V_1 \otimes V_2)^T$$
, where $D = (\Sigma_1^2 \otimes \Sigma_2^2 + \lambda^2 I)^{1/2}$.

Rank-one Updating Scheme for Preconditioner

$$M = D(V_1 \otimes V_2)^T, \quad \text{where } D = (\Sigma_1^2 \otimes \Sigma_2^2 + \lambda^2 I)^{1/2}.$$

$$M^T M = [D(V_1 \otimes V_2)^T]^T D(V_1 \otimes V_2)^T$$

$$= (V_1 \otimes V_2) DD(V_1 \otimes V_2)^T$$

$$= (V_1 \otimes V_2)(\Sigma_1^2 \otimes \Sigma_2^2 + \lambda^2 I)(V_1 \otimes V_2)^T$$

$$= (V_1 \otimes V_2)(\Sigma_1^2 \otimes \Sigma_2^2 + \lambda^2 (I_1 \otimes I_2))(V_1 \otimes V_2)^T$$

$$= V_1 \Sigma_1^2 V_1^T \otimes V_2 \Sigma_2^2 V_2^T + \lambda^2 V_1 V_1^T \otimes V_2 V_2^T$$

$$= V_1 \Sigma_1^T U_1^T U_1 \Sigma_1 V_1^T \otimes V_2 \Sigma_2^T U_2^T U_2 \Sigma_2 V_2^T + \lambda^2 I$$

$$= H_1^T H_1 \otimes H_2^T H_2 + \lambda^2 I$$

$$= (H_1 \otimes H_2)^T (H_1 \otimes H_2) + \lambda^2 I$$

$$= H^T H + \lambda^2 I.$$

Rank-one Updating Scheme for Preconditioner

Now if
$$A = A_1 \otimes A_2 + \mathbf{wz}^T = \tilde{Q}[H + v(\mathbf{e}_1 \otimes \mathbf{e}_1)\mathbf{z}^T]$$
 and $H = H_1 \otimes H_2$, we get
$$A^T A = [H^T + v(\mathbf{z}_1 \mathbf{e}_1^T \otimes \mathbf{z}_2 \mathbf{e}_1^T)]Q^T Q[H + v(\mathbf{e}_1 \otimes \mathbf{e}_1)\mathbf{z}^T]$$
$$= H^T H + v(H_1^T \mathbf{e}_1 \mathbf{z}_1^T \otimes H_2^T \mathbf{e}_1 \mathbf{z}_2^T)$$
$$+ v(\mathbf{z}_1 \mathbf{e}_1^T H_1 \otimes \mathbf{z}_2 \mathbf{e}_1^T H_2) + v^2(\mathbf{z}_1 \mathbf{e}_1^T \mathbf{e}_1 \mathbf{z}_1^T \otimes \mathbf{z}_2 \mathbf{e}_1^T \mathbf{e}_1 \mathbf{z}_2^T)$$
$$= H^T H + R$$

where R is the sum of the three remaining rank-one matrices. Now if we add $\lambda^2 I$ to both sides,

$$A^{T}A + \lambda^{2}I = H^{T}H + \lambda^{2}I + R$$
$$= M^{T}M + R$$

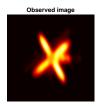
Efficient Preconditioner Criteria

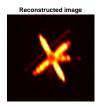
$$M = D(V_1 \otimes V_2)^T$$
, where $D = (\Sigma_1^2 \otimes \Sigma_2^2 + \lambda^2 I)^{1/2}$

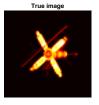
Find M that has the following properties:

- M can be computed efficiently.
- Solving linear systems with M and M^T can be done efficiently.
- M has the property that $M^TM \approx A^TA + \lambda^2I$. Ideally, if $M^TM (A^TA + \lambda^2I)$ is a matrix of rank r, then LSQR will converge in at most r iterations.

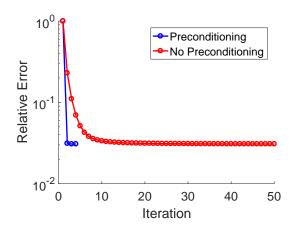
64×64 pixel Satellite Image



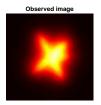


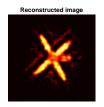


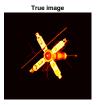
64 × 64 pixel Satellite Image



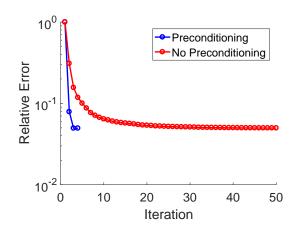
256 × 256 pixel Satellite Image







256 × 256 pixel Satellite Image



Time Comparisons

	Preconditioner			No Preconditioner		
size	Time (s)	rel.error	# Itr.	Time (s)	rel.error	# Itr.
4,096	0.0707	$8.2326 \cdot 10^{-5}$	3	0.5155	$8.2369 \cdot 10^{-5}$	50
65, 536	0.5140	$3.5307 \cdot 10^{-4}$	3	11.5040	$3.5505 \cdot 10^{-4}$	50

Conclusion

Remarks:

- Rank-one updating scheme provides an efficient preconditioner for image deblurring problem
- Guaranteed to converge in at most 3 iterations
- Increased speed over benchmark method

Future Work:

- Extending our approach to rank-k modifications, where k > b
- Comparisons with other fast methods