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Introduction

Image Deblurring

Image deblurring-

Given blurred image :
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Introduction

Image Deblurring

Image deblurring-

Given blurred image :

Compute estimate of true image:
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Introduction

Mathematical Model

General mathematical model for image formation:
b=Ax+n

where
@ b = vector representing observed image
@ x = vector representing true image
@ A = matrix defining blurring operation

@ 7 = unknown additive noise
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Introduction

Approximation of Blurring Matrix

The blurring matrix is defined by:

K=A®@B+A®B+ - +A,®B, (1)
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Introduction

Approximation of Blurring Matrix

The blurring matrix is defined by:
K=A®B+AB+ ---+A,® B, (1)
Which can be approximated using only the first two terms

KAl ®@A+B ®B;. (2)
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Introduction

Approximation of Blurring Matrix

The blurring matrix is defined by:
K=A @B +A®B+ +A,®B, (1)
Which can be approximated using only the first two terms
Kx~A QA +B ®B>. (2)
Second term can be approximated by a rank-one matrix?!
KrA=A QA +wz', (3)
where w = w; ® wy and z = z; ® z, and are column vectors.
M. Rezghi, S.M. Hosseini, and L. Elden, Best Kronecker product

approximation of the blurring operator in three dimensional image restoration
problems ,SIAM J. Matrix Anal. Appl. Vol. 35, No. 3,-pp. 10861104
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Introduction

Tikhonov Regularization

Least squares problem
min || Ax - b3
Damped least squares problem
min {[|Ax — b|[3 + A?||x|[3} . (4)

The regularization parameter A controls the smoothness of the
solution.
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Introduction

Figure: Observed image, along with three reconstructed images where
A =0, A =X/1000, and A\ = X % 0.6 respectively

Observed image

Reconstructed image Reconstructed image Reconstructed image

’
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Introduction

Tikhonov Regularization

Damped least squares problem (equation (4)) is reformulated

M

Now, if we combine this equation with the approximation of the
blurring matrix

2
min
X

(5)

2

min
X

Al @Ay +wz' . b
Al

(6)
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Introduction

min
X

A @ Ay +wz' . b
Al

Use LSQR to compute solution
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QR Factorization

QR factorization (or decomposition):
If Ac R™*" then there exists matrices @ and R such that

A= QR

where Q e R™™ QTQ =1 (i.e Q is an orthogonal matrix) and
R € RM*n
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Givens Rotations

Givens rotations (or plane rotations):
A Givens rotation is a matrix that represents a clockwise rotation by an

ang|e 0. i
o [5 J- [0 &)
In general: - 1
1
G;j(0) C S
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Example

Givens rotations example:

>

I
X X X
X X %
X X X

Note
@ zero entry rotated into a zero entry will remain zero

non-zero entry rotated to a zero entry will change the zero
entry into a non-zero entry
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Example

Givens rotations example:

>

Il
X X X
X X X
X X X
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Example

Givens rotations example:

X X X

A= |[x x x

X X X
X X X
Gu(0)"A=| % % X
0 x X
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Example

X X X
Gi2(02)TGo3(A1)TA= |0 X X
0 x x
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Example

X X X
G12(92)TG23(01)TA: 0 X X
0 X X
X X X
Go3(03) T G12(A2) T Go3(61)TA= |0 X X
0 0 x
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Example

X X X

G12(02)TGo3(1)TA= |0 X X

0 x x
X X X
G23(93)TG12(02)TG23(91)TA: 0 x X
0 0 Xx

Because the product of orthogonal matrices is an orthogonal
matrix, we let Q = G23(61)Gi12(02) Ga3(63), and we obtain

Q"A=R =— A=QR.
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Updating Problem

Updating problem:
Given a solution to a mathematical problem, efficiently compute a new
solution when the problem is slightly modified.
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Updating Problem

Updating problem:
Given a solution to a mathematical problem, efficiently compute a new
solution when the problem is slightly modified.

@ appending a row: Given QR factorization of A, compute QR
factorization of

@ appending a column: Given QR factorization of A, compute QR

factorization of y
A=[A]uT].

@ adding a rank-one matrix: Given QR factorization of A, compute
QR factorization of .
A=A+wz,

where w, z are column vectors
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Kronecker Product

Kronecker product: generalized outer product that results in a
block matrix.

8115 alzB c. alnB

8213 3223 . ag,,B
K=A® B =

amlB asz e amnB
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Example
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Example

3 10
IfA—[3 4 5] and B—[O 1},then
102030
A B — 1B 2B 3B (01 0 2 0 3
~|3B 4B 5B| (3 0 4 0 5 0
0 304005
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Properties

Property 1
(AeB)  =AT BT (7)
Property 2

If A and B are invertible, then A ® B is invertible and
(AeB)t=A1eB! (8)
Property 3

If A and B are orthogonal, then A® B is also orthogonal.  (9)
Property 4

(A B)(C® D) = AC ® BD (10)



Preconditioner

Preconditioner

What is a preconditoner?
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Preconditioner

Preconditioner

What is a preconditoner?
application of a transformation to make a problem more suitable
for solving methods
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Preconditioner

Rank-one Update

Given QR factorization of A, compute QR factorization of
A=A+wz',

where w, z are column vectors
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Preconditioner

Rank-one Update

Given QR factorization of A, compute QR factorization of
A=A+ wz',

where w, z are column vectors

A=A+wz"
= QR +wz'
= Q[R+ QTwz"]
=QR+QQ QTwz']
= Q@[@TR + ceiz’]
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Preconditioner

Rank-one Update
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Preconditioner

Rank-one Update

X
R =
X
X
X X X X
—T X X
Q R=H=
X X X
X X
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Preconditioner

Rank-one Update

Q|
s

where O =Q
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Preconditioner

Rank-one Update for Kronecker Products

Rank-one update for Kronecker products:
Suppose we are given a matrix A; and A, and their corresponding
QR factorizations,

A=A @A +wz" =(Q® &) (RL®R)+ (w1 @wy)(z1®22)".
This problem is restated as

A=(Q @ Q)R ®R)+(Q w1 ® QJwa)(z1 ®22)T]  (11)
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Preconditioner

Rank-one Update for Kronecker Products

A=(Q1® Q)[R ®R)+ (@ w1 ® Q) wy)(z1 ®22) 7]
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Preconditioner

Rank-one Update for Kronecker Products

A=(Q1® Q)[R ®R)+(Q w1 ® Qwo)(z1 ®22) 7]

A=(QRQ)(r@Q)[(( T®QzT)(R1®R2)+V(e1®el)(Z1®22)T],

where v is a scalar.

Raul Platero, Emory University LS Updating for Kronecker Products



Preconditioner

Rank-one Update for Kronecker Products

A=(Q® Q)[R ®R)+ (@ w1 ® Q) wa)(z1 ®22) 7]
A= (Ql®Qz)(@1®©2)[(@1T®Q2T)(R1®R2)+V(el®el)(21®Z2)T]y

where v is a scalar.

A=(Ql® Q)[(H1® Ho) + v(ei @ er)(z1 ®22)"] (12)
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Preconditioner

Preconditioner

What makes a good preconditioner?
Find M that has the following properties:
@ M can be computed efficiently.
@ Solving linear systems with M and M T can be done efficiently.
@ M has the property that MTM ~ AT A+ A2/. Ideally, if
MTM — (ATA+ N21) is a matrix of rank r, then LSQR will

converge in at most r iterations?.

2S. Karimi, D. K. Salkuyeh and F. Toutounian, A preconditioner for
LSQR algorithm, 9J. Appl. Math. and Informatics Vol. 26(2008), No. 1
_ 2, pp. 213 - 222



Preconditioner

Rank-one Updating Scheme for Preconditioner

A=(Q1® Q)[(H1® Ha) + v(er ®e1)(z1 ®22)"] (13)

Consider the singular value decomposition of H; and Hs:
Hy = UiX1Vy" and Ho = UhX,V,) .
We will use the following as our preconditioner:

M=D(Vi® Vo))", where D= (X3 %3+ \2/)'2.
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Preconditioner

Rank-one Updating Scheme for Preconditioner

M=D(Vi® Vs)T, where D= (X2 %3+ \2/)/2.
MTM =[D(Vy ® Vo)T]"TD(Vy @ Vo)T
= (V1 ® Vu)DD(Vy @ Vo) T
= (Vi W)(ZTe 5+ )(Vie V)T
=(VioW)(Z2e 3+ N (hoh)(Vie V)"
S VX VARG RV w A VARNED VR VAN R VA VAl
= VY U] Uisi V] @ Vo d U Usso VT + N2
= H{ Hy ® HJ Hy 4+ )21
= (H1 ® Ha) T (H1 @ Ha) 4+ A21
=HTH+ )\2I.



Preconditioner

Rank-one Updating Scheme for Preconditioner

Now if A= A; @ Ay + wzT = Q[H + v(e; ® e1)z"] and
H = H; ® H,, we get
ATA=[HT 4 v(zie] ® 2] )]QT Q[H + v(e; ® e1)z"]
=H"H+ v(H e1z{ ® H, e;2])
+ v(zlelTHl X ZzelTHz) + v2(zlez—elzlr ® 22617—81227—)

=H"H+R
where R is the sum of the three remaining rank-one matrices. Now if we
add )2/ to both sides,

ATA+ NI =HTH+ X1 +R
=M"M+R
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Preconditioner

Efficient Preconditioner Criteria

M=D(Vi® Va)", where D= (X2 53+ \2/)!/2

Find M that has the following properties:
@ M can be computed efficiently.
@ Solving linear systems with M and M T can be done efficiently.

@ M has the property that MTM ~ AT A+ A2/. Ideally, if
MTM — (ATA + A2/) is a matrix of rank r, then LSQR will
converge in at most r iterations.
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Numerical Experiments

64 x 64 pixel Satellite Image

Observed image Reconstructed image True image

#
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Numerical Experiments

64 x 64 pixel Satellite Image

=6-Preconditioning
-6-No Preconditioning

Relative Error

0 10 20 30 40 50
Iteration
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Numerical Experiments

256 x 256 pixel Satellite Image

Observed image Reconstructed image True image
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Numerical Experiments

256 x 256 pixel Satellite Image

=6-Preconditioning
-6-No Preconditioning

Relative Error

0 10 20 30 40 50
Iteration
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Numerical Experiments

Time Comparisons

Preconditioner No Preconditioner

size Time (s) rel.error # Itr. | Time (s) rel.error # ltr.
4,096 0.0707 | 8.2326-10~° 3 0.5155 | 8.2369-10—> 50
65,536 || 0.5140 | 3.5307-10~* 3 11.5040 | 3.5505-10~* | 50
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Conclusion

Conclusion

Remarks:

@ Rank-one updating scheme provides an efficient preconditioner
for image deblurring problem

o Guaranteed to converge in at most 3 iterations
@ Increased speed over benchmark method
Future Work:
@ Extending our approach to rank-k modifications, where k > b

@ Comparisons with other fast methods
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